4 research outputs found

    Directed Energy Deflection Laboratory Measurements

    Get PDF
    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR and DE-STARLITE are directed energy stand-off and stand-on programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroidā€™s orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid. In the DE-STAR concept, the asteroid itself is used as the deflection propellant . This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an asteroid sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 Ī¼N/W optical, though we assume a more conservative value of 80 Ī¼N/W optical and then degrade this with an optical encircled energy efficiency of 0.75 to 60 Ī¼N/W optical in our deflection modeling. Our measurements discussed here yield about 45 Ī¼N/W absorbed as a reasonable lower limit to the thrust per optical watt absorbed

    Directed Energy Interstellar Propulsion of WaferSats

    Get PDF
    In the nearly 60 years of spaceflight we have accomplished wonderful feats of exploration and shown the incredible spirit of the human drive to explore and understand our universe. Yet in those 60 years we have barely left our solar system with the Voyager 1 spacecraft launched in 1977 finally leaving the solar system after 37 years of flight at a speed of 17 km/s or less than 0.006% the speed of light. As remarkable as this is, we will never reach even the nearest stars with our current propulsion technology in even 10 millennium. We have to radically rethink our strategy or give up our dreams of reaching the stars, or wait for technology that does not exist. While we all dream of human spaceflight to the stars in a way romanticized in books and movies, it is not within our power to do so, nor it is clear that this is the path we should choose. We posit a technological path forward, that while not simple; it is within our technological reach. We propose a roadmap to a program that will lead to sending relativistic probes to the nearest stars and will open up a vast array of possibilities of flight both within our solar system and far beyond. Spacecraft from gram level complete spacecraft on a wafer (ā€œwafer satsā€) that reach more than Ā¼ c and reach the nearest star in 15 years to spacecraft with masses more than 105 kg (100 tons) that can reach speeds of near 1000 km/s such systems can be propelled to speeds currently unimaginable with our existing propulsion technologies. To do so requires a fundamental change in our thinking of both propulsion and in many cases what a spacecraft is. In addition to larger spacecraft, some capable of transporting humans, we consider functional spacecraft on a wafer, including integrated optical communications, optical systems and sensors combined with directed energy propulsion. Since ā€œat homeā€ the costs can be amortized over a very large number of missions. The human factor of exploring the nearest stars and exo-planets would be a profound voyage for humanity, one whose non-scientific implications would be enormous. It is time to begin this inevitable journey beyond our home

    The listening talker: A review of human and algorithmic context-induced modifications of speech

    Get PDF
    International audienceSpeech output technology is finding widespread application, including in scenarios where intelligibility might be compromised - at least for some listeners - by adverse conditions. Unlike most current algorithms, talkers continually adapt their speech patterns as a response to the immediate context of spoken communication, where the type of interlocutor and the environment are the dominant situational factors influencing speech production. Observations of talker behaviour can motivate the design of more robust speech output algorithms. Starting with a listener-oriented categorisation of possible goals for speech modification, this review article summarises the extensive set of behavioural findings related to human speech modification, identifies which factors appear to be beneficial, and goes on to examine previous computational attempts to improve intelligibility in noise. The review concludes by tabulating 46 speech modifications, many of which have yet to be perceptually or algorithmically evaluated. Consequently, the review provides a roadmap for future work in improving the robustness of speech output
    corecore