271 research outputs found

    The rapid dispersal of low-mass virialised clusters

    Full text link
    Infant mortality brought about by the expulsion of a star cluster's natal gas is widely invoked to explain cluster statistics at different ages. While a well studied problem, most recent studies of gas expulsion's effect on a cluster have focused on massive clusters, with stellar counts of order 10410^4. Here we argue that the evolutionary timescales associated with the compact low-mass clusters typical of the median cluster in the Solar neighborhood are short enough that significant dynamical evolution can take place over the ages usually associated with gas expulsion. To test this we perform {\it N}-body simulations of the dynamics of a very young star forming region, with initial conditions drawn from a large-scale hydrodynamic simulation of gravitational collapse and fragmentation. The subclusters we analyse, with populations of a few hundred stars, have high local star formation efficiencies and are roughly virialised even after the gas is removed. Over 10 Myr they expand to a similar degree as would be expected from gas expulsion if they were initially gas-rich, but the expansion is purely due to the internal stellar dynamics of the young clusters. The expansion is such that the stellar densities at 2 Myr match those of YSOs in the Solar neighborhood. We argue that at the low-mass end of the cluster mass spectrum, a deficit of clusters at 10s of Myr does not necessarily imply gas expulsion as a disruption mechanism.Comment: 11 pages, accepted to MNRAS. Updated to match accepted version: title changed, one new subsection, some new figure

    The effect of the dynamical state of clusters on gas expulsion and infant mortality

    Get PDF
    The star formation efficiency (SFE) of a star cluster is thought to be the critical factor in determining if the cluster can survive for a significant (>50 Myr) time. There is an often quoted critical SFE of ~30 per cent for a cluster to survive gas expulsion. I reiterate that the SFE is not the critical factor, rather it is the dynamical state of the stars (as measured by their virial ratio) immediately before gas expulsion that is the critical factor. If the stars in a star cluster are born in an even slightly cold dynamical state then the survivability of a cluster can be greatly increased.Comment: 6 pages, 2 figures. Review talk given at the meeting on "Young massive star clusters - Initial conditions and environments", E. Perez, R. de Grijs, R. M. Gonzalez Delgado, eds., Granada (Spain), September 2007, Springer: Dordrecht. Replacement to correct mistake in a referenc

    Do binaries in clusters form in the same way as in the field?

    Get PDF
    We examine the dynamical destruction of binary systems in star clusters of different densities. We find that at high densities (10^4 - 10^5 Msun pc^-3) almost all binaries with separations > 10^3 AU are destroyed after a few crossing times. At low densities (order(10^2) Msun pc^-3) many binaries with separations > 10^3 AU are destroyed, and no binaries with separations > 10^4 AU survive after a few crossing times. Therefore the binary separations in clusters can be used as a tracer of the dynamical age and past density of a cluster. We argue that the central region of the Orion Nebula Cluster was around 100 times denser in the past with a half-mass radius of only 0.1 - 0.2 pc as (a) it is expanding, (b) it has very few binaries with separations > 10^3 AU, and (c) it is well-mixed and therefore dynamically old. We also examine the origin of the field binary population. Binaries with separations < 10^2 AU are not significantly modified in any cluster, therefore at these separations the field reflects the sum of all star formation. Binaries with separations in the range 10^2 - 10^4 AU are progressively more and more heavily affected by dynamical disruption in increasingly dense clusters. If most star formation is clustered, these binaries must be over-produced relative to the field. Finally, no binary with a separation > 10^4 AU can survive in any cluster and so must be produced by isolated star formation, but only if all isolated star formation produces extremely wide binaries.Comment: 12 pages, 6 figures, accepted for publication in MNRA

    Surviving infant mortality in the hierarchical merging scenario

    Get PDF
    We examine the effects of gas expulsion on initially sub-structured and out-of-equilibrium star clusters. We perform NN-body simulations of the evolution of star clusters in a static background potential before removing that potential to model gas expulsion. We find that the initial star formation efficiency is not a good measure of the survivability of star clusters. This is because the stellar distribution can change significantly, causing a large change in the relative importance of the stellar and gas potentials. We find that the initial stellar distribution and velocity dispersion are far more important parameters than the initial star formation efficiency, and that clusters with very low star formation efficiencies can survive gas expulsion. We suggest that it is variations in cluster initial conditions rather than in their star formation efficiencies that cause some clusters to be destroyed while a few survive.Comment: 9 pages, 10 figures, 1 tabl

    The puzzle of the cluster-forming core mass-radius relation and why it matters

    Full text link
    We highlight how the mass-radius relation of cluster-forming cores combined with an external tidal field can influence infant weight-loss and disruption likelihood of clusters after gas expulsion. Specifically, we study how the relation between the bound fraction of stars staying in clusters at the end of violent relaxation and the cluster-forming core mass is affected by the slope and normalization of the core mass-radius relation. Assuming mass-independent star formation efficiency and gas-expulsion time-scale τGExp/τcross\tau_{GExp}/\tau_{cross} and a given external tidal field, it is found that constant surface density cores and constant radius cores have the potential to lead to the preferential removal of high- and low-mass clusters, respectively. In contrast, constant volume density cores result in mass-independent cluster infant weight-loss, as suggested by observations. Our modelling includes predictions about the evolution of high-mass cluster-forming cores, a regime not yet covered by the observations. An overview of various issues directly affected by the nature of the core mass-radius relation is presented (e.g. cluster mass function, galaxy star formation histories, globular cluster self-enrichment). Finally, we emphasize that observational mass-radius data-sets of dense gas regions must be handled with caution as they may be the imprint of the molecular tracer used to map them, rather than reflecting cluster formation conditions. [Abridged]Comment: 14 pages, 7 figures, accepted to MNRA

    Hunting for millimeter flares from magnetic reconnection in pre-main sequence spectroscopic binaries

    Get PDF
    Recent observations of the low-mass pre-main sequence, eccentric spectroscopic binaries DQ Tau and V773 Tau A reveal that their millimeter spectrum is occasionally dominated by flares from non-thermal emission processes. The transient activity is believed to be synchrotron in nature, resulting from powerful magnetic reconnection events when the separate magnetic structures of the binary components are capable of interacting and forced to reorganize, typically near periastron. We conducted the first systematic study of the millimeter variability toward a sample of 12 PMS spectroscopic binaries with the aim to characterize the proliferation of flares amongst sources likely to experience similar interbinary reconnection events. The source sample consists of short-period, close-separation binaries that possess either a high orbital eccentricity or a circular orbit. Using the MAMBO2 array on the IRAM 30m telescope, we carried out continuous monitoring at 1.25 mm over a 4-night period during which all of the high-eccentricity binaries approached periastron. We also obtained simultaneous optical VRI measurements, since a strong link is often observed between stellar reconnection events and optical brightenings. UZ Tau E is the only source to be detected at millimeter wavelengths: it exhibited significant variation; it is also the only source to undergo strong simultaneous optical variability. The binary possesses the largest orbital eccentricity in the current sample, a predicted factor in star-star magnetic interaction events. With orbital parameters and variable accretion activity similar to DQ Tau, the millimeter behavior of UZ Tau E draws many parallels to the DQ Tau model for colliding magnetospheres. However, on the basis of our observations alone, we cannot determine whether the variability is repetitive, or if it could also be due to variable free-free emission in an ionized wind.Comment: 19 pages in referee format, 3 figures, 1 table, 3 on-line tables, accepted for publication in Astronomy and Astrophysic

    On the evolution of a star cluster and its multiple stellar systems following gas dispersal

    Full text link
    We investigate the evolution, following gas dispersal, of a star cluster produced from a hydrodynamical calculation. We find that when the gas, initially comprising 60% of the mass, is removed, the system settles into a bound cluster containing 30-40% of the stellar mass surrounding by an expanding halo of ejected stars. The bound cluster expands from an initial radius of <0.05 pc to 1-2 pc over 4-10 Myr, depending on how quickly the gas is removed, implying that stellar clusters may begin with far higher stellar densities than usually assumed. With rapid gas dispersal the most massive stars are found to be mass segregated for the first ~1 Myr of evolution, but classical mass segregation only develops for cases with long gas removal timescales. Eventually, many of the most massive stars are expelled from the bound cluster. Despite the high initial stellar density and the extensive dynamical evolution of the system, we find that the stellar multiplicity is almost constant during the 10 Myr of evolution. This is because the primordial multiple systems are formed in a clustered environment and, thus, by their nature are already resistant to further evolution. The majority of multiple system evolution is confined to the decay of high-order systems and the formation of a significant population of very wide (10^4-10^5 AU) multiple systems in the expanding halo. This formation mechanism for wide binaries potentially solves the problem of how most stars apparently form in clusters and yet a substantial population of wide binaries exist in the field. Many of these wide binaries and the binaries produced by the decay of high-order multiple systems have unequal mass components, potentially solving the problem that hydrodynamical simulations of star formation are found to under-produce unequal-mass solar-type binaries.Comment: Accepted by MNRAS, 18 pages, 13 figure

    Testing the universality of star formation - II. Comparing separation distributions of nearby star-forming regions and the field

    Get PDF
    We have measured the multiplicity fractions and separation distributions of seven young star-forming regions using a uniform sample of young binaries. Both the multiplicity fractions and separation distributions are similar in the different regions. A tentative decline in the multiplicity fraction with increasing stellar density is apparent, even for binary systems with separations too close (19-100au) to have been dynamically processed. The separation distributions in the different regions are statistically indistinguishable over most separation ranges, and the regions with higher densities do not exhibit a lower proportion of wide (300-620au) relative to close (62-300au) binaries as might be expected from the preferential destruction of wider pairs. Only the closest (19-100au) separation range, which would be unaffected by dynamical processing, shows a possible difference in separation distributions between different regions. The combined set of young binaries, however, shows a distinct difference when compared to field binaries, with a significant excess of close (19-100au) systems among the younger binaries. Based on both the similarities and differences between individual regions, and between all seven young regions and the field, especially over separation ranges too close to be modified by dynamical processing, we conclude that multiple star formation is not universal and, by extension, the star formation process is not universal.Comment: accepted for publication in MNRA

    Roy-Steiner-equation analysis of pion-nucleon scattering

    Full text link
    We review the structure of Roy-Steiner equations for pion-nucleon scattering, the solution for the partial waves of the t-channel process ππNˉN\pi\pi\to \bar N N, as well as the high-accuracy extraction of the pion-nucleon S-wave scattering lengths from data on pionic hydrogen and deuterium. We then proceed to construct solutions for the lowest partial waves of the s-channel process πNπN\pi N\to \pi N and demonstrate that accurate solutions can be found if the scattering lengths are imposed as constraints. Detailed error estimates of all input quantities in the solution procedure are performed and explicit parameterizations for the resulting low-energy phase shifts as well as results for subthreshold parameters and higher threshold parameters are presented. Furthermore, we discuss the extraction of the pion-nucleon σ\sigma-term via the Cheng-Dashen low-energy theorem, including the role of isospin-breaking corrections, to obtain a precision determination consistent with all constraints from analyticity, unitarity, crossing symmetry, and pionic-atom data. We perform the matching to chiral perturbation theory in the subthreshold region and detail the consequences for the chiral convergence of the threshold parameters and the nucleon mass.Comment: 101 pages, 28 figures; journal versio
    corecore