287 research outputs found

    Dancing with black holes

    Full text link
    We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.Comment: 8 figures, 10 pages, to appear in "Dynamical Evolution of Dense Stellar Systems", ed. E. Vesperin

    Singular solutions to the Seiberg-Witten and Freund equations on flat space from an iterative method

    Full text link
    Although it is well known that the Seiberg-Witten equations do not admit nontrivial L2L^2 solutions in flat space, singular solutions to them have been previously exhibited -- either in R3R^3 or in the dimensionally reduced spaces R2R^2 and R1R^1 -- which have physical interest. In this work, we employ an extension of the Hopf fibration to obtain an iterative procedure to generate particular singular solutions to the Seiberg-Witten and Freund equations on flat space. Examples of solutions obtained by such method are presented and briefly discussed.Comment: 7 pages, minor changes. To appear in J. Math. Phy

    Radial Coulomb and Oscillator Systems in Arbitrary Dimensions

    Full text link
    A mapping is obtained relating analytical radial Coulomb systems in any dimension greater than one to analytical radial oscillators in any dimension. This mapping, involving supersymmetry-based quantum-defect theory, is possible for dimensions unavailable to conventional mappings. Among the special cases is an injection from bound states of the three-dimensional radial Coulomb system into a three-dimensional radial isotropic oscillator where one of the two systems has an analytical quantum defect. The issue of mapping the continuum states is briefly considered.Comment: accepted for publication in J. Math. Phy

    Unified treatment of the Coulomb and harmonic oscillator potentials in DD dimensions

    Full text link
    Quantum mechanical models and practical calculations often rely on some exactly solvable models like the Coulomb and the harmonic oscillator potentials. The DD dimensional generalized Coulomb potential contains these potentials as limiting cases, thus it establishes a continuous link between the Coulomb and harmonic oscillator potentials in various dimensions. We present results which are necessary for the utilization of this potential as a model and practical reference problem for quantum mechanical calculations. We define a Hilbert space basis, the generalized Coulomb-Sturmian basis, and calculate the Green's operator on this basis and also present an SU(1,1) algebra associated with it. We formulate the problem for the one-dimensional case too, and point out that the complications arising due to the singularity of the one-dimensional Coulomb problem can be avoided with the use of the generalized Coulomb potential.Comment: 18 pages, 3 ps figures, revte

    An Invertible Linearization Map for the Quartic Oscillator

    Full text link
    The set of world lines for the non-relativistic quartic oscillator satisfying Newton's equation of motion for all space and time in 1-1 dimensions with no constraints other than the "spring" restoring force is shown to be equivalent (1-1-onto) to the corresponding set for the harmonic oscillator. This is established via an energy preserving invertible linearization map which consists of an explicit nonlinear algebraic deformation of coordinates and a nonlinear deformation of time coordinates involving a quadrature. In the context stated, the map also explicitly solves Newton's equation for the quartic oscillator for arbitrary initial data on the real line. This map is extended to all attractive potentials given by even powers of the space coordinate. It thus provides classes of new solutions to the initial value problem for all these potentials

    Comment on "Quantum bound states with zero binding energy"

    Full text link
    The purpose of this Comment is to show that the solutions to the zero energy Schr\"odinger equations for monomial central potentials discussed in a recently published Letter, may also be obtained from the corresponding free particle solutions in a straight forwardly way, using an algorithm previously devised by us. New solutions to the zero energy Schr\"odinger equation are also exhibited.Comment: Accepted for publication in PHISICS LETTERS

    The efficiency of resonant relaxation around a massive black hole

    Full text link
    Resonant relaxation (RR) is a rapid relaxation process that operates in the nearly-Keplerian potential near a massive black hole (MBH). RR dominates the dynamics of compact remnants that inspiral into a MBH and emit gravitational waves (extreme mass ratio inspiral events, EMRIs). RR can either increase the EMRI rate, or strongly suppress it, depending on its still poorly-determined efficiency. We use small-scale Newtonian N-body simulations to measure the RR efficiency and to explore its possible dependence on the stellar number density profile around the MBH, and the mass-ratio between the MBH and a star (a single-mass stellar population is assumed). We develop an efficient and robust procedure for detecting and measuring RR in N-body simulations. We present a suite of simulations with a range of stellar density profiles and mass-ratios, and measure the mean RR efficiency in the near-Keplerian limit. We do not find a statistically significant dependence on the density profile or the mass-ratio. Our numerical determination of the RR efficiency in the Newtonian, single-mass population approximations, suggests that RR will likely enhance the EMRI rate by a factor of a few over the rates predicted assuming only slow stochastic two-body relaxation.Comment: 5 pp, 6 figs, ApJ submitte

    Attosecond time-scale multi-electron collisions in the Coulomb four-body problem: traces in classical probability densities

    Get PDF
    In the triple ionization of the Li ground state by single photon absorption the three electrons escape to the continuum mainly through two collision sequences with individual collisions separated by time intervals on the attosecond scale. We investigate the traces of these two collision sequences in the classical probability densities. We show that each collision sequence has characteristic phase space properties which distinguish it from the other. Classical probability densities are the closest analog to quantum mechanical densities allowing our results to be directly compared to quantum mechanical results.Comment: 9 pages, 10 figure

    An analytic solution for weak-field Schwarzschild geodesics

    Full text link
    It is well known that the classical gravitational two body problem can be transformed into a spherical harmonic oscillator by regularization. We find that a modification of the regularization transformation has a similar result to leading order in general relativity. In the resulting harmonic oscillator, the leading-order relativistic perturbation is formally a negative centrifugal force. The net centrifugal force changes sign at three Schwarzschild radii, which interestingly mimics the innermost stable circular orbit (ISCO) of the full Schwarzschild problem. Transforming the harmonic-oscillator solution back to spatial coordinates yields, for both timelike and null weak-field Schwarzschild geodesics, a solution for t,r,ϕt,r,\phi in terms of elementary functions of a variable that can be interpreted as a generalized eccentric anomaly. The textbook expressions for relativistic precession and light deflection are easily recovered. We suggest how this solution could be combined with additional perturbations into numerical methods suitable for applications such as relativistic accretion or dynamics of the Galactic-centre stars.Comment: 8 pages; Published in the MNRAS; The definitive version is available at www.blackwell-synergy.co

    Semiclassical initial value calculations of collinear helium atom

    Full text link
    Semiclassical calculations using the Herman-Kluk initial value treatment are performed to determine energy eigenvalues of bound and resonance states of the collinear helium atom. Both the eZeeZe configuration (where the classical motion is fully chaotic) and the ZeeZee configuration (where the classical dynamics is nearly integrable) are treated. The classical motion is regularized to remove singularities that occur when the electrons collide with the nucleus. Very good agreement is obtained with quantum energies for bound and resonance states calculated by the complex rotation method.Comment: 24 pages, 3 figures. Submitted to J. Phys.
    corecore