779 research outputs found

    Autoantibodies to complement components in C3 glomerulopathy and atypical hemolytic uremic syndrome.

    Get PDF
    The alternative pathway of complement is implicated in the pathogenesis of several renal diseases, such as atypical hemolytic uremic syndrome, dense deposit disease and other forms of C3 glomerulopathy. The underlying complement defects include genetic and/or acquired factors, the latter in the form of autoantibodies. Because the autoimmune forms require a specific treatment, in part different from that of the genetic forms, it is important to detect the autoantibodies as soon as possible and understand their characteristics. In this overview, we summarize the types of anti-complement autoantibodies detected in such diseases, i.e. autoantibodies to factor H, factor I, C3b, factor B and those against the C3 convertases (C3 nephritic factor and C4 nephritic factor). We draw attention to newly described autoantibodies and their characteristics, and highlight similarities and differences in the autoimmune forms of these diseases

    Heterogeneity but individual constancy of epitopes, isotypes and avidity of factor H autoantibodies in atypical hemolytic uremic syndrome

    Get PDF
    Factor H (FH) autoantibodies are present in 6-10% of atypical hemolytic uremic syndrome (aHUS) patients, most of whom have homozygous deficiency of the FH-related protein FHR-1. Although the pathogenic role of the autoantibodies is established, little is known about their molecular characteristics and changes over time. Here, we describe the specificity and other immunological features of anti-FH autoantibodies in the Spanish and Hungarian aHUS cohorts. A total of 19 patients were included and serial samples of 14 of them were available. FH autoantibodies from FHR-1 deficient patients (n=13) mainly recognized FH, its SCR19-20 fragment and FHR-1, but autoantibody specificity in patients who are homo- or heterozygous for the CFHR1 gene (n=6) was heterogeneous. No significant changes apart from total antibody titer were observed during follow-up in each patient. Fine epitope mapping with recombinant FH SCR19-20 containing single amino acid mutations showed significantly reduced binding in 6 out of 14 patients. In most cases, autoantibody binding to residues 1183-1189 and 1210-1215 was impaired, revealing a major common autoantibody epitope. Avidities showed variations between patients, but in most cases the avidity index did not change upon time. Most autoantibodies were IgG3, and all but three presented only with kappa or with lambda light chains. Although the pathogenic role of anti-FH autoantibodies in aHUS is well established, this study shows autoantibody heterogeneity among patients, but no significant variation in their characteristics over time in each patient. The presence of a single light chain in 16 out of 19 patients and the limited number of recognized epitopes suggest a restricted autoantibody response in most patients

    The major autoantibody epitope on factor H in atypical hemolytic uremic syndrome is structurally different from its homologous site in factor H-related protein 1, supporting a novel model for induction of autoimmunity in this disease

    Get PDF
    Atypical hemolytic uremic syndrome (aHUS) is characterized by complement attack against host cells due to mutations in complement proteins or autoantibodies against complement factor H (CFH). It is unknown why nearly all patients with autoimmune aHUS lack CFHR1 (CFH-related protein-1). These patients have autoantibodies against CFH domains 19 and 20 (CFH19-20), which are nearly identical to CFHR1 domains 4 and 5 (CFHR14-5). Here, binding site mapping of autoantibodies from 17 patients using mutant CFH19-20 constructs revealed an autoantibody epitope cluster within a loop on domain 20, next to the two buried residues that are different in CFH19-20 and CFHR14-5. The crystal structure of CFHR14-5 revealed a difference in conformation of the autoantigenic loop in the C-terminal domains of CFH and CFHR1, explaining the variation in binding of autoantibodies from some aHUS patients to CFH19-20 and CFHR14-5. The autoantigenic loop on CFH seems to be generally flexible, as its conformation in previously published structures of CFH19-20 bound to the microbial protein OspE and a sialic acid glycan is somewhat altered. Cumulatively, our data suggest that association of CFHR1 deficiency with autoimmune aHUS could be due to the structural difference between CFHR1 and the autoantigenic CFH epitope, suggesting a novel explanation for CFHR1 deficiency in the pathogenesis of autoimmune aHUS

    Measurement of illumination exposure in postpartum women

    Get PDF
    BACKGROUND: Low levels of light exposure at critical times are thought to cause seasonal affective disorder. Investigators, in studies demonstrating the usefulness of bright light therapy, also have implicated light's role in non-seasonal depression. The precise cause of postpartum depression has not been delineated, but it seemed possible that new mothers would spend reduced time in daylight. The goal of this study was to examine the levels of illumination experienced by postpartum mothers and to discover any relationship between light exposure and mood levels experienced during the postpartum period. METHODS: Fifteen postpartum women, who did not have any baseline indication of depression, wore a wrist device (Actillume) for 72 hours to measure their exposure to light. At the end of the recording period, they completed a self-reported measure of mood. The mean light exposure of these postpartum women (expressed as the 24-hour average logarithm of illumination in lux) was compared with that of a representative sample of women of comparable age, residence, and seasonal months of recording. Mood levels were then rank-ordered and tested for correlation with light exposure levels. RESULTS: There was no significant difference between the amount of light [log(10)lux] experienced by postpartum (1.01 SD 0.236) and control women (1.06 SD 0.285). Mood was not correlated with illumination in the postpartum sample. CONCLUSIONS: Postpartum women in San Diego did not receive reduced light, nor was low mood related to low illumination

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    An integrative skeletal and paleogenomic analysis of stature variation suggests relatively reduced health for early european farmers

    Get PDF
    Human culture, biology, and health were shaped dramatically by the onset of agriculture ∼12,000 y B.P. This shift is hypothesized to have resulted in increased individual fitness and population growth as evidenced by archaeological and population genomic data alongside a decline in physiological health as inferred from skeletal remains. Here, we consider osteological and ancient DNA data from the same prehistoric individuals to study human stature variation as a proxy for health across a transition to agriculture. Specifically, we compared “predicted” genetic contributions to height from paleogenomic data and “achieved” adult osteological height estimated from long bone measurements for 167 individuals across Europe spanning the Upper Paleolithic to Iron Age (∼38,000 to 2,400 B.P.). We found that individuals from the Neolithic were shorter than expected (given their individual polygenic height scores) by an average of −3.82 cm relative to individuals from the Upper Paleolithic and Mesolithic (P = 0.040) and −2.21 cm shorter relative to post-Neolithic individuals (P = 0.068), with osteological vs. expected stature steadily increasing across the Copper (+1.95 cm relative to the Neolithic), Bronze (+2.70 cm), and Iron (+3.27 cm) Ages. These results were attenuated when we additionally accounted for genome-wide genetic ancestry variation: for example, with Neolithic individuals −2.82 cm shorter than expected on average relative to pre-Neolithic individuals (P = 0.120). We also incorporated observations of paleopathological indicators of nonspecific stress that can persist from childhood to adulthood in skeletal remains into our model. Overall, our work highlights the potential of integrating disparate datasets to explore proxies of health in prehistory.info:eu-repo/semantics/publishedVersio

    A Novel Function of DELTA-NOTCH Signalling Mediates the Transition from Proliferation to Neurogenesis in Neural Progenitor Cells

    Get PDF
    A complete account of the whole developmental process of neurogenesis involves understanding a number of complex underlying molecular processes. Among them, those that govern the crucial transition from proliferative (self-replicating) to neurogenic neural progenitor (NP) cells remain largely unknown. Due to its sequential rostro-caudal gradients of proliferation and neurogenesis, the prospective spinal cord of the chick embryo is a good experimental system to study this issue. We report that the NOTCH ligand DELTA-1 is expressed in scattered cycling NP cells in the prospective chick spinal cord preceding the onset of neurogenesis. These Delta-1-expressing progenitors are placed in between the proliferating caudal neural plate (stem zone) and the rostral neurogenic zone (NZ) where neurons are born. Thus, these Delta-1-expressing progenitors define a proliferation to neurogenesis transition zone (PNTZ). Gain and loss of function experiments carried by electroporation demonstrate that the expression of Delta-1 in individual progenitors of the PNTZ is necessary and sufficient to induce neuronal generation. The activation of NOTCH signalling by DELTA-1 in the adjacent progenitors inhibits neurogenesis and is required to maintain proliferation. However, rather than inducing cell cycle exit and neuronal differentiation by a typical lateral inhibition mechanism as in the NZ, DELTA-1/NOTCH signalling functions in a distinct manner in the PNTZ. Thus, the inhibition of NOTCH signalling arrests proliferation but it is not sufficient to elicit neuronal differentiation. Moreover, after the expression of Delta-1 PNTZ NP continue cycling and induce the expression of Tis21, a gene that is upregulated in neurogenic progenitors, before generating neurons. Together, these experiments unravel a novel function of DELTA–NOTCH signalling that regulates the transition from proliferation to neurogenesis in NP cells. We hypothesize that this novel function is evolutionary conserved

    Specialist laboratory networks as preparedness and response tool - The emerging viral diseases-expert laboratory network and the chikungunya outbreak, Thailand, 2019

    Get PDF
    We illustrate the potential for specialist laboratory networks to be used as preparedness and response tool through rapid collection and sharing of data. Here, the Emerging Viral Diseases-Expert Laboratory Network (EVD-LabNet) and a laboratory assessment of chikungunya virus (CHIKV) in returning European travellers related to an ongoing outbreak in Thailand was used for this purpose. EVD-LabNet rapidly collected data on laboratory requests, diagnosed CHIKV imported cases and sequences generated, and shared among its members and with the European Centre for Disease Prevention and Control. Data across the network showed an increase in CHIKV imported cases during 1 October 2018-30 April 2019 vs the same period in 2018 (172 vs 50), particularly an increase in cases known to be related to travel to Thailand (72 vs 1). Moreover, EVD-LabNet showed that strains were imported from Thailand that cluster with strains of the ECSA-IOL E1 A226 variant emerging in Pakistan in 2016 and involved in the 2017 outbreaks in Italy. CHIKV diagnostic requests increased by 23.6% between the two periods. The impact of using EVD-LabNet or similar networks as preparedness and response tool could be improved by standardisation of the collection, quality and mining of data in routine laboratory management systems
    corecore