8 research outputs found

    Thorough QT/QTc (TQT) study

    Get PDF
    With a number of drugs entering the market, cardiac safety remains a cause of major concern for the regulatory authorities, before approval. The incidence of drug induced arrhythmia with non-cardiovascular drugs is low, however the result is fatal, hence much focus is being given to assess the pro-arrhythmic potential of a drug. The arrhythmogenic risk of the drug is higher if the patient is on polypharmacy or has other risk factors such as an electrolyte imbalance or an underlying structural heart disease. QT prolongation can be either due to congenital causes such as Long QT syndromes (LQTS) which include Romano-Ward syndrome, Jervell and Lange-Nielson syndrome or can be acquired, which is mainly due to drugs. Several drugs such as terfenadine, astemizole, cisapride and grepafloxacin have been withdrawn from the market due to QT prolongation and development of a fatal ventricular arrythmia - torsades de pointes (TdP). This has led to implementation of guidelines to assess cardiac safety. The pro-arrhythmic risk can be assessed using thorough QT/QTc studies or exposure response modelling of intensive ECGs. This article will give an overall view of the use of QT/QTc interval as a biomarker for cardiac safety and the current guidelines for thorough QT/QTc studies which are mainly done to assess the pro-arrhythmic potential of a non-anti-arrhythmic drug

    Arsenic Trioxide Enhances the NK Cell Cytotoxicity Against Acute Promyelocytic Leukemia While Simultaneously Inhibiting Its Bio-Genesis

    No full text
    Natural killer cells (NK) contribute significantly to eradication of cancer cells, and there is increased interest in strategies to enhance it’s efficacy. Therapeutic agents used in the treatment of cancer can impact the immune system in a quantitative and qualitative manner. In this study, we evaluated the impact of arsenic trioxide (ATO) used in the management of acute promyelocytic leukemia (APL) on NK cell reconstitution and function. In patients with APL treated with single agent ATO, there was a significant delay in the reconstitution of circulating NK cells to reach median normal levels from the time of diagnosis (655 days for NK cells vs 145 and 265 days for T cells and B cells, respectively). In vitro experiments demonstrated that ATO significantly reduced the CD34 hematopoietic stem cell (HSC) differentiation to NK cells. Additional experimental data demonstrate that CD34+ sorted cells when exposed to ATO lead to a significant decrease in the expression of IKZF2, ETS1, and TOX transcription factors involved in NK cell differentiation and maturation. In contrast, exposure of NK cells and leukemic cells to low doses of ATO modulates NK cell receptors and malignant cell ligand profile in a direction that enhances NK cell mediated cytolytic activity. We have demonstrated that NK cytolytic activity toward NB4 cell line when exposed to ATO was significantly higher when compared with controls. We also validated this beneficial effect in a mouse model of APL were the median survival with ATO alone and ATO + NK was 44 days (range: 33–46) vs 54 days (range: 52–75). In conclusion, ATO has a differential quantitative and qualitative effect on NK cell activity. This information can potentially be exploited in the management of leukemia

    Data_Sheet_1_Arsenic Trioxide Enhances the NK Cell Cytotoxicity Against Acute Promyelocytic Leukemia While Simultaneously Inhibiting Its Bio-Genesis.docx

    No full text
    <p>Natural killer cells (NK) contribute significantly to eradication of cancer cells, and there is increased interest in strategies to enhance it’s efficacy. Therapeutic agents used in the treatment of cancer can impact the immune system in a quantitative and qualitative manner. In this study, we evaluated the impact of arsenic trioxide (ATO) used in the management of acute promyelocytic leukemia (APL) on NK cell reconstitution and function. In patients with APL treated with single agent ATO, there was a significant delay in the reconstitution of circulating NK cells to reach median normal levels from the time of diagnosis (655 days for NK cells vs 145 and 265 days for T cells and B cells, respectively). In vitro experiments demonstrated that ATO significantly reduced the CD34 hematopoietic stem cell (HSC) differentiation to NK cells. Additional experimental data demonstrate that CD34<sup>+</sup> sorted cells when exposed to ATO lead to a significant decrease in the expression of IKZF2, ETS1, and TOX transcription factors involved in NK cell differentiation and maturation. In contrast, exposure of NK cells and leukemic cells to low doses of ATO modulates NK cell receptors and malignant cell ligand profile in a direction that enhances NK cell mediated cytolytic activity. We have demonstrated that NK cytolytic activity toward NB4 cell line when exposed to ATO was significantly higher when compared with controls. We also validated this beneficial effect in a mouse model of APL were the median survival with ATO alone and ATO + NK was 44 days (range: 33–46) vs 54 days (range: 52–75). In conclusion, ATO has a differential quantitative and qualitative effect on NK cell activity. This information can potentially be exploited in the management of leukemia.</p

    Implementing an intensive care registry in India: Preliminary results of the case-mix program and an opportunity for quality improvement and research

    No full text
    Background: The epidemiology of critical illness in India is distinct from high-income countries. However, limited data exist on resource availability, staffing patterns, case-mix and outcomes from critical illness. Critical care registries, by enabling a continual evaluation of service provision, epidemiology, resource availability and quality, can bridge these gaps in information. In January 2019, we established the Indian Registry of IntenSive care to map capacity and describe case-mix and outcomes. In this report, we describe the implementation process, preliminary results, opportunities for improvement, challenges and future directions. Methods: All adult and paediatric ICUs in India were eligible to join if they committed to entering data for ICU admissions. Data are collected by a designated representative through the electronic data collection platform of the registry. IRIS hosts data on a secure cloud-based server and access to the data is restricted to designated personnel and is protected with standard firewall and a valid secure socket layer (SSL) certificate. Each participating ICU owns and has access to its own data. All participating units have access to de-identified network-wide aggregate data which enables benchmarking and comparison. Results: The registry currently includes 14 adult and 1 paediatric ICU in the network (232 adult ICU beds and 9 paediatric ICU beds). There have been 8721 patient encounters with a mean age of 56.9 (SD 18.9); 61.4% of patients were male and admissions to participating ICUs were predominantly unplanned (87.5%). At admission, most patients (61.5%) received antibiotics, 17.3% needed vasopressors, and 23.7% were mechanically ventilated. Mortality for the entire cohort was 9%. Data availability for demographics, clinical parameters, and indicators of admission severity was greater than 95%. Conclusions: IRIS represents a successful model for the continual evaluation of critical illness epidemiology in India and provides a framework for the deployment of multi-centre quality improvement and context-relevant clinical research

    Nanotechnologies for tissue engineering and regeneration

    No full text
    corecore