154 research outputs found

    Board Interlocks and Their Impact on Corporate Governance: The Indian Experience - Coping with Corporate Cholesterol

    Get PDF
    Board interlocks occur when a director of one organization sits on the board of directors of another organization. The causes and consequences of these interlocks have been much debated in the western literature but comparatively little is known about interlocks in Indian corporate boards. Board interlocks are essentially analogous to cholesterol. Both are facts of life. Like good cholesterol, there are aspects of interlocking directorates that are beneficial and there are others that are detrimental to the corporation and its stakeholders and their respective interests. In this study, we find that board interlocks are quite widespread in India. Taking a (numerically) small but nevertheless (in terms of market capitalization) an important slice of available corporate data, we observed that in 2010, ‘highly boarded’ directors (defined as those on the board of 5 or more listed NSE companies) who constitute just 6 percent of the overall pool of directors among NSE100 companies are associated with 486 NSE listed companies which account for a whopping 66 percent of the total market capitalization of all NSE listed companies. Interestingly, there appears to be a marked increase in market capitalization of these ‘highly boarded’ companies, which these ‘highly boarded’ directors are linked to over the last several years. For instance, for the 3 years from 2001 to 2003, the market capitalization of ‘highly boarded’ companies ranged between 33 percent to 43 percent; it moved up to peak of 70 percent in 2007 and was at 66 percent in 2010 (the latest year in the study period). The substantive rise in market capitalization of these ‘highly boarded’ companies has coincided with only a marginal increase (from 5% to 6%) in the proportion of ‘highly boarded’ directorships. These trends suggest that despite the well-intentioned regulatory reforms (a) the extent of over-boarding/interlocking among directors has not come down (there is actually a marginal increase) and (b) there appears to be increasing concentration of power among key individuals. Given the general view that concentration of power in a few individuals or entities is not desirable in the larger interests of society, it would appear that the observed trends in the concentration of power among a handful of the country’s corporate elite is a matter for substantive public policy concern. Finally, the regression analysis indicates a positive impact on Return on Assets (ROA) for ‘highly boarded’ directors signifying a negation of the agency centric conceptualization on the role of multiple directors. Instead, connectedness variables (Eigen vector) which proxy for the Resource dependency hypothesis are quite strongly supported. In a nutshell, from public policy perspective, the analysis potentially reflects the ‘bad cholesterol’ elements of multiple directorships in terms of a tiny segment of ‘highly boarded’ directors controlling a significant portion of the country’s economic prowess, whereas the positive influences on company performance provide some evidence of the ‘good cholesterol’.

    SMAD6 variants in craniosynostosis : genotype and phenotype evaluation

    Get PDF
    PURPOSE: Enrichment of heterozygous missense and truncating SMAD6 variants was previously reported in nonsyndromic sagittal and metopic synostosis, and interaction of SMAD6 variants with a common polymorphism near BMP2 (rs1884302) was proposed to contribute to inconsistent penetrance. We determined the occurrence of SMAD6 variants in all types of craniosynostosis, evaluated the impact of different missense variants on SMAD6 function, and tested independently whether rs1884302 genotype significantly modifies the phenotype. METHODS: We performed resequencing of SMAD6 in 795 unsolved patients with any type of craniosynostosis and genotyped rs1884302 in SMAD6-positive individuals and relatives. We examined the inhibitory activity and stability of SMAD6 missense variants. RESULTS: We found 18 (2.3%) different rare damaging SMAD6 variants, with the highest prevalence in metopic synostosis (5.8%) and an 18.3-fold enrichment of loss-of-function variants comparedwith gnomAD data (P < 10-7). Combined with eight additional variants, ≄20/26 were transmitted from an unaffected parent but rs1884302 genotype did not predict phenotype. CONCLUSION: Pathogenic SMAD6 variants substantially increase the risk of both nonsyndromic and syndromic presentations of craniosynostosis, especially metopic synostosis. Functional analysis is important to evaluate missense variants. Genotyping of rs1884302 is not clinically useful. Mechanisms to explain the remarkable diversity of phenotypes associated with SMAD6 variants remain obscure

    Gravitational waves from inspiralling compact binaries: Angular momentum flux, evolution of the orbital elements and the wave form to the second post-Newtonian order

    Get PDF
    The post-post-Newtonian (2PN) accurate mass quadrupole moment, for compact binaries of arbitrary mass ratio, moving in general orbits is obtained by the multi-polar post Minkowskian approach of Blanchet, Damour, and Iyer (BDI). Using this, for binaries in general orbits, the 2PN contributions to the gravitational waveform, and the associated far-zone energy and angular momentum fluxes are computed. For quasi-elliptic orbits, the energy and angular momentum fluxes are averaged over an orbital period, and employed to determine the 2PN corrections to the rate of decay of the orbital elements.Comment: 49 pages, No figures, accepted for publication in Phy. Rev. D (15

    SMAD6 variants in craniosynostosis: genotype and phenotype evaluation

    Get PDF
    Purpose: Enrichment of heterozygous missense and truncating SMAD6 variants was previously reported in nonsyndromic sagittal and metopic synostosis, and interaction of SMAD6 variants with a common polymorphism near BMP2 (rs1884302) was proposed to contribute to inconsistent penetrance. We determined the occurrence of SMAD6 variants in all types of craniosynostosis, evaluated the impact of different missense variants on SMAD6 function, and tested independently whether rs1884302 genotype significantl

    Particle identification in ALICE: a Bayesian approach

    Get PDF
    We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is performed via measurements of specific energy loss (dE/dx\mathrm{d}E/\mathrm{d}x) and time-of-flight. PID efficiencies and misidentification probabilities are extracted and compared with Monte Carlo simulations using high-purity samples of identified particles in the decay channels KS0→π−π+{\rm K}^0_S \rightarrow \pi^-\pi^+, ϕ→K−K+\phi \rightarrow {\rm K}^-{\rm K}^+, and Λ→pπ−\Lambda \rightarrow {\rm p}\pi^- in p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV. In order to thoroughly assess the validity of the Bayesian approach, this methodology was used to obtain corrected pTp_{\rm T} spectra of pions, kaons, protons, and D0^0 mesons in pp collisions at s=7\sqrt{s}=7 TeV. In all cases, the results using Bayesian PID were found to be consistent with previous measurements performed by ALICE using a standard PID approach. For the measurement of D0→K−π+^0 \rightarrow {\rm K}^-\pi^+, it was found that a Bayesian PID approach gave a higher signal-to-background ratio and a similar or larger statistical significance when compared with standard PID selections, despite a reduced identification efficiency. Finally, we present an exploratory study of the measurement of Λc+→pK−π+\Lambda_{\rm c}^{+}\rightarrow {\rm p} {\rm K}^-\pi^+ in pp collisions at s=7\sqrt{s}=7 TeV, using the Bayesian approach for the identification of its decay products

    Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

    Get PDF
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP)(1). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed(2-6). Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions(7), is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions(8,9), but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results(10,11), indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.Peer reviewe

    Measurement of transverse energy at midrapidity in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    We report the transverse energy (ET) measured with ALICE at midrapidity in Pb-Pb collisions at root s(NN) = 2.76 TeV as a function of centrality. The transverse energy was measured using identified single-particle tracks. The measurement was cross checked using the electromagnetic calorimeters and the transverse momentum distributions of identified particles previously reported by ALICE. The results are compared to theoretical models as well as to results from other experiments. The mean ET per unit pseudorapidity (eta), , in 0%-5% central collisions is 1737 +/- 6(stat.) +/- 97(sys.) GeV. We find a similar centrality dependence of the shape of as a function of the number of participating nucleons to that seen at lower energies. The growth in at the LHC energies exceeds extrapolations of low-energy data. We observe a nearly linear scaling of with the number of quark participants. With the canonical assumption of a 1 fm/c formation time, we estimate that the energy density in 0%-5% central Pb-Pb collisions at root s(NN) = 2.76 TeV is 12.3 +/- 1.0 GeV/fm(3) and that the energy density at the most central 80 fm(2) of the collision is at least 21.5 +/- 1.7 GeV/fm(3). This is roughly 2.3 times that observed in 0%-5% central Au-Au collisions at root s(NN) = 200 GeV.Peer reviewe

    Measurement of the production of high-p(T) electrons from heavy-flavour hadron decays in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPElectrons from heavy-flavour hadron decays (charm and beauty) were measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass of energy root s(NN) = 2.76 TeV. The transverse momentum (pT) differential production yields at mid-rapidity were used to calculate the nuclear modification factor R-AA in the interval 3 < p(T) < 18 GeV/c. The R-AA shows a strong suppression compared to binary scaling of pp collisions at the same energy (up to a factor of 4) in the 10% most central Pb-Pb collisions. There is a centrality trend of suppression, and a weaker suppression (down to a factor of 2) in semi-peripheral (50-80%) collisions is observed. The suppression of electrons in this broad p(T) interval indicates that both charm and beauty quarks lose energy when they traverse the hot medium formed in Pb-Pb collisions at LHC.771467481CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informaçãoSem informaçãoThe ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung fĂŒr Forschung, Technologie und Entwicklung, Austria; Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP), Brazil; Ministry of Education of China (MOE of China), Ministry of Science & Technology of China (MOST of China) and National Natural Science Foundation of China (NSFC), China; Ministry of Science, Education and Sports and Croatian Science Foundation, Croatia; Centro de Investigaciones EnergĂ©ticas, Medioambientales y TecnolĂłgicas (CIEMAT), Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; Danish National Research Foundation (DNRF), The Carlsberg Foundation and The Danish Council for Independent Research–Natural Sciences, Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat Ă  l'Energie Atomique (CEA) and Institut National de Physique NuclĂ©aire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium fĂŒr Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum fĂŒr Schwerionenforschung GmbH, Germany; Ministry of Education, Research and Religious Affairs, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE), India; Indonesian Institute of Science, Indonesia; Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia y TecnologĂ­a (CONACYT), through Fondo de CooperaciĂłn Internacional en Ciencia y TecnologĂ­a (FONCICYT) and DirecciĂłn General de Asuntos del Personal Academico (DGAPA), Mexico; Nationaal instituut voor subatomaire fysica (Nikhef), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad CatĂłlica del PerĂș, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), South Korea; Centro de Investigaciones EnergĂ©ticas, Medioambientales y TecnolĂłgicas (CIEMAT) and Ministerio de Ciencia e Innovacion, Spain; Knut & Alice Wallenberg Foundation (KAW) and Swedish Research Council (VR), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Office of the Higher Education Commission under NRU project of Thailand and Suranaree University of Technology (SUT), Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States

    Evolution of the longitudinal and azimuthal structure of the near-side jet peak in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPIn two-particle angular correlation measurements, jets give rise to a near-side peak, formed by particles associated to a higher-p(T) trigger particle. Measurements of these correlations as a function of pseudorapidity (Delta eta) and azimuthal (Delta phi) differences are used to extract the centrality and p(T) dependence of the shape of the near-side peak in the p(T) range 1 < p(T) < 8 GeV/c in Pb-Pb and pp collisions at root s(NN) = 2.76 TeV. A combined fit of the near-side peak and long-range correlations is applied to the data and the peak shape is quantified by the variance of the distributions. While the width of the peak in the Delta phi direction is almost independent of centrality, a significant broadening in the Delta eta direction is found from peripheral to central collisions. This feature is prominent for the low-p(T) region and vanishes above 4 GeV/c. The widths measured in peripheral collisions are equal to those in pp collisions in the Delta phi direction and above 3 GeV/c in the Delta eta direction. Furthermore, for the 10% most central collisions and 1 < p(T, assoc) < 2 GeV/c, 1 < p(T,trig) < 3 GeV/c, a departure from a Gaussian shape is found: a depletion develops around the center of the peak. The results are compared to A Multi-Phase Transport (AMPT) model simulation as well as other theoretical calculations indicating that the broadening and the development of the depletion are connected to the strength of radial and longitudinal flow.963118CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informaçãoSem informaçãoThe ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung fur Forschung, Technologie und Entwicklung, Austria; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (Finep), and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil; Ministry of Education of China (MOE of China), Ministry of Science & Technology of China (MOST of China), and National Natural Science Foundation of China (NSFC), China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; Danish National Research Foundation (DNRF), The Carlsberg Foundation and The Danish Council for Independent Research-Natural Sciences, Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat a l'Energie Atomique (CEA) and Institut National de Physique Nucleaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Germany; Ministry of Education, Research and Religious Affairs, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), India; Indonesian Institute of Science, Indonesia; Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI, and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnologia, through Fondo de Cooperacion Internacional en Ciencia y Tecnologia (FONCICYT) and Direccion General de Asuntos del Personal Academico (DGAPA), Mexico; Nationaal instituut voor subatomaire fysica (Nikhef), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Catolica del Peru, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), South Korea; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) and Ministerio de Ciencia e Innovacion, Spain; Knut & AliceWallenberg Foundation (KAW) and Swedish Research Council (VR), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Office of the Higher Education Commission under NRU project of Thailand and Suranaree University of Technology (SUT), Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States
    • 

    corecore