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Abstract

We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The
aim is to more effectively combine the particle identification capabilities of its various detectors. Af-
ter a brief explanation of the adopted methodology and formalism, the performance of the Bayesian
PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is
performed via measurements of specific energy loss (dE/dx) and time-of-flight. PID efficiencies and
misidentification probabilities are extracted and compared with Monte Carlo simulations using high-
purity samples of identified particles in the decay channels K0

S→ π−π+, φ →K−K+, and Λ→ pπ−

in p–Pb collisions at
√

sNN = 5.02TeV. In order to thoroughly assess the validity of the Bayesian
approach, this methodology was used to obtain corrected pT spectra of pions, kaons, protons, and D0

mesons in pp collisions at
√

s = 7 TeV. In all cases, the results using Bayesian PID were found to
be consistent with previous measurements performed by ALICE using a standard PID approach. For
the measurement of D0→ K−π+, it was found that a Bayesian PID approach gave a higher signal-
to-background ratio and a similar or larger statistical significance when compared with standard PID
selections, despite a reduced identification efficiency. Finally, we present an exploratory study of the
measurement of Λ+

c → pK−π+ in pp collisions at
√

s = 7 TeV, using the Bayesian approach for the
identification of its decay products.

∗See Appendix A for the list of collaboration members
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1 Introduction

Particle Identification (PID) provides information about the mass and flavour composition of particle
production in high-energy physics experiments. In the context of ALICE (A Large Ion Collider Experi-
ment) [1], identified particle yields and spectra give access to the properties of the state of matter formed
at extremely high energy densities in ultra-relativistic heavy-ion collisions. Modern experiments usually
consist of a variety of detectors featuring different PID techniques. Bayesian approaches to the problem
of combining PID signals from different detectors have already been used by several experiments, e.g.
NA27 [2], HADES [3] and BESII [4]. This technique was proposed for ALICE during its early planning
stages [5] and then used extensively to prepare the ALICE Physics Performance Report [6, 7]. An anal-
ogous method is also used to combine the PID signals from the different layers of the ALICE Transition
Radiation Detector.

The ALICE detector system is composed of a central part that covers the mid-rapidity region |η |< 1 (the
‘central barrel’), and a muon spectrometer that covers the forward rapidity region −4 < η <−2.5. The
central barrel detectors that have full coverage in azimuth (ϕ) are, from small to large radii, the Inner
Tracking System (ITS), the Time Projection Chamber (TPC), the Transition Radiation Detector (TRD)1

and the Time Of Flight system (TOF). Further dedicated PID detectors with limited acceptance in ϕ and
η are also located in the central barrel. These are the Electromagnetic Calorimeter (EMCal), the Photon
Spectrometer (PHOS), and a Cherenkov system for High-Momentum Particle Identification (HMPID).

The central barrel detectors provide complementary PID information and the capability to separate parti-
cle species in different momentum intervals. At low momenta (p . 3–4GeV/c), a track-by-track separa-
tion of pions, kaons and protons is made possible by combining the PID signals from different detectors.
At higher momenta, statistical unfolding based on the relativistic rise of the TPC signal can be performed
for PID. Given the wide range of momenta covered, ALICE has the strongest PID capabilities of any of
the LHC experiments. More details about the identification possibilities of the single detectors can be
found in [1].

Several different PID methods were applied for analyses of data collected by ALICE during the RUN 1
data taking period of the LHC (2009–2013). A non-exhaustive list of examples of PID in ALICE is given
in the following. Results were published on the transverse momentum (pT) distributions of charged pion,
kaon and proton production [8, 9, 10] in different collision systems and centre-of-mass energies using the
ITS, TPC, TOF and HMPID detectors. Electron measurements from semileptonic heavy-flavour hadron
decays took advantage of the TPC, TOF, TRD and EMCal detectors [11, 12]. Neutral pion production
was studied via photon detection in the PHOS and the detection of e+e− pairs from gamma conversions
in the TPC. PID detectors were also used extensively to improve the signal-to-background ratios when
studying the production of certain particles based on the reconstruction of their decay products, such as
D mesons [13], φ and K∗ resonances [14]; in studies of particle correlations, such as femtoscopy [15];
and to identify light nuclei [16]. In all analyses where PID was used, selections were applied based on
individual detector signals and later combined.

In this paper we describe results obtained during RUN 1 in pp collisions at
√

s = 7TeV, Pb–Pb collisions
at
√

sNN = 2.76TeV and p–Pb collisions at
√

sNN = 5.02TeV. In particular, we focus on the hadron
identification capabilities of the central barrel detectors that had full azimuthal coverage during RUN 1.
These are the ITS, TPC and TOF detectors, which are described in more detail below. The other central
barrel detectors are not discussed here.

The ITS is formed of six concentric cylindrical layers of silicon detectors: two layers each of Silicon
Pixel (SPD), Silicon Drift (SDD) and Silicon Strip Detectors (SSD). The SDD and the SSD provide a
read-out of the signal amplitude, and thus contribute to the PID by measuring the specific energy loss

1The TRD was completed during the first Long Shutdown phase (2013–2015) and only had partial ϕ coverage during the
RUN 1 data taking period (2009–2013).
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(dE/dx) of the traversing particle. A truncated mean of the (up to) four signals is calculated, resulting in
a relative dE/dx resolution of approximately 12% [1].

The TPC [17] is the main tracking device of ALICE. Particle identification is performed by measuring
the specific energy loss (dE/dx) in the detector gas2 in up to 159 read-out pad rows. A truncated mean
that rejects the 40% largest cluster charges is built, resulting in a Gaussian dE/dx response. The dE/dx
resolution ranges between 5–8% depending on the track inclination angle and drift distance, the energy
loss itself, and the centrality in p–Pb and Pb–Pb collisions due to the differing detector occupancy.

The TOF detector [18] is based on Multigap Resistive Plate Chamber technology. It measures the flight
times of particles with an intrinsic resolution of ∼80 ps. The expected flight time for each particle
species is calculated during the reconstruction, and then PID is performed via a comparison between the
measured and expected times.

Other forward-rapidity detectors are also relevant to the data analyses presented in this paper. The V0
plastic scintillator arrays, V0A (covering 2.8 < η < 5.1) and V0C (−3.7 < η < −1.7), are required in
the minimum-bias trigger. The V0 signals are also used to determine the centrality of p–Pb and Pb–Pb
collisions. The T0 detector is a quartz Cherenkov detector that is used for start-time estimation with a
resolution of ∼40 ps in pp collisions and 20–25 ps in Pb–Pb collisions.

A thorough understanding of the detector response is crucial for any particle identification method. In the
case of dE/dx, this means a well parameterised description of the average energy loss (according to the
Bethe-Bloch formula [19]) and a reliable estimate of the signal resolution. For the TOF measurement,
the start-time information, start-time resolution, track reconstruction resolution, and intrinsic detector
resolution need to be known [18].

Combining the PID signals of the individual detectors using a Bayesian approach [20] makes effective
use of the full PID capabilities of ALICE. However, using combined probabilities to perform particle
identification may result in unintuitive, non-trivial track selections. It is therefore important to benchmark
the Bayesian PID method, compare efficiencies in data and Monte Carlo, and validate that this technique
does not introduce a systematic bias with respect to previously published results. This paper focuses on
the verification of the Bayesian PID approach on the basis of various data analyses.

Section 2 describes the Bayesian approach (2.1), the definitions of efficiency and contamination in the
context of PID (2.2), the extraction and application of prior distributions (2.3), and different strategies for
using the resulting probabilities (2.4). Section 3 presents benchmark analyses of high-purity samples of
pions, kaons, and protons from the two-prong decays of K0

S mesons, φ mesons and Λ baryons. Section 4
presents validations of the Bayesian approach for two full analyses: the measurement of the transverse
momentum spectra of pions, kaons and protons (4.1), and the analysis of D0→ K−π+ (4.2). Section 5
illustrates the application of the Bayesian PID approach to maximise the statistical significance when
analysing the production of Λ+

c baryons. Finally, a conclusion and outlook are given in Section 6.

2 Bayesian PID in ALICE

Simple selections based on the individual PID signals of each detector do not take full advantage of the
PID capabilities of ALICE. An example of this is illustrated in Fig. 1, which shows the separation of
the expected TPC and TOF signals for pions, kaons and protons with transverse momenta in the range
2.5 < pT < 3 GeV/c. Clearly, the separation in the two-dimensional plane (the peak-to-peak distance)
of e.g. pions and kaons is larger than the separation of each individual one-dimensional projection. A
natural way of combining the information of independent detectors is to express the signals in terms of
probabilities. An additional advantage of this method is that detectors with non-Gaussian responses can
also be included in a straightforward way. A Bayesian approach makes use of the full PID capabilities

2 A Ne-CO2-based gas mixture of ∼90m3 in RUN 1.
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Fig. 1: Combined particle identification in the TPC and TOF for data from Pb–Pb collisions at
√

sNN = 2.76TeV,
shown as a two-dimensional plot. The PID signals are expressed in terms of the deviation from the expected
response for pions in each detector.

by folding the probabilities with the expected abundances (priors) of each particle species. This section
outlines the standard ‘nσ ’ PID approach, before presenting the method used to combine the signals from
the different detectors when adopting a Bayesian PID approach.

2.1 PID signals in ALICE

The response of each detector can be expressed in terms of its raw signal, S. One of the simplest ways
of performing PID is to directly select based on S. Examples of S include the flight-time information
from the TOF detector, tTOF, and the specific energy loss dE/dx in detector gas or silicon, respectively
measured by the TPC and the ITS. A more advantageous approach would be to use a discriminating
variable, ξ , which makes use of the expected detector response R:

ξ = f (S,R), (1)

where R can have functional dependences on the properties of the particle tracks, typically the mo-
mentum p, the charge Z, or the track length L. The detector response functions are usually complex
parameterisations expressing an in-depth knowledge of subtle detector effects.

For a detector with a Gaussian response, R is given by the expected average signal Ŝ(Hi) for a given
particle species Hi and the expected signal resolution σ . The index i usually refers to electrons, muons,
pions, kaons or protons, but may also include light nuclei such as deuterons, tritons, 3He nuclei and
4He nuclei. The most commonly used discriminating variable for PID is the nσ variable, defined as the
deviation of the measured signal from that expected for a species Hi, in terms of the detector resolution:

n
σ i

α
=

Sα − Ŝ(Hi)α

σ i
α

, (2)

where α = (ITS,TPC, ...). The resolution is given here as σ i
α , as it depends both on the detector and the

species being measured. In the following, σ i
α is simply referred to as ‘σ ’.

The nσ PID approach corresponds to a ‘true/false’ decision on whether a particle belongs to a given
species. A certain identity is assigned to a track if this value lies within a certain range around the
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expectation (typically 2 or 3σ ). Depending on the detector separation power, a track can be compatible
with more than one identity.

For a given detector α with a Gaussian response, it is possible to define the conditional probability that
a particle of species Hi will produce a signal S as

P(S|Hi) =
1√

2πσ
e−

1
2 nσ

2
=

1√
2πσ

e−
(S−Ŝ(Hi))

2

2σ2 . (3)

In the case of a non-Gaussian response, the probability is described by an alternative parameterisation
appropriate to the detector. The advantage of using probabilities is that the probabilities from different
detectors, Pα , with and without Gaussian responses, can then be combined as a product:

P(~S|Hi) = ∏
α=ITS,TPC,...

Pα(Sα |Hi), (4)

where ~S = (SITS,STPC, ...).

The probability estimate P(~S|Hi) (either for a single detector, or combined over many) can be interpreted
as the conditional probability that the set of detector signals ~S will be seen for a given particle species
Hi. However, the variable of interest is the conditional probability that the particle is of species Hi,
given some measured detector signal (i.e. P(Hi|~S)). The relation between the two for a combined set of
detectors can be expressed using Bayes’ theorem [20]:

P(Hi|~S) =
P(~S|Hi)C(Hi)

∑k=e,µ,π,... P(~S|Hk)C(Hk)
. (5)

Here, C(Hi) is an a priori probability of measuring the particle species Hi, also known as the prior, and
the conditional probability P(Hi|~S) is known as the posterior probability.

The priors (which are discussed in more detail in Section 2.3) serve as a ‘best guess’ of the true particle
yields per event. When such a definition is adopted for the priors, a selection based on the Bayesian
probability calculated with Eq. 5 then corresponds to a request on the purity (defined as the ratio between
the number of correctly identified particles and the total selected). Additionally, priors can be used to
reject certain particle species that are not relevant to a given analysis. Most commonly in the context of
the ALICE central barrel, the prior for muons is set to zero. Due to the similarity between the pion and
muon mass, the two species are almost indistinguishable over a broad momentum range; the efficiency
of detecting a pion would thus be reduced if muons were not neglected. At the same time, this influences
the number of particles wrongly identified as pions, since the true abundance of muons (roughly 2% of
all particles, estimated using Monte Carlo simulations) is neglected. This case is further discussed in the
following sections.

2.2 PID efficiency and contamination

In order to obtain the physical quantity of interest (typically a cross section or a spectrum) from a raw
yield, it is necessary to (a) compute the efficiency due to other selections applied before PID, and (b)
compute the efficiency of the PID strategy. The PID efficiency is defined as the proportion of particles
of a given species that are identified correctly by the PID selections. Both kinds of efficiency are usually
estimated via Monte Carlo techniques. To precisely compute the efficiency of a given PID strategy, it is
of utmost importance that an accurate description of the actual signals present in the data is provided by
the Monte Carlo simulation. Special care must be given to the ‘tuning’ of Monte Carlo simulations to
reproduce all of the features and dependences observed in data for PID signals.
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It is possible to define a εPID matrix that contains the probability to identify a species i as a species j. If
only pions, kaons and protons are considered, the 3×3 εPID matrix is defined as

εPID =

εππ επK επp
εKπ εKK εKp
εpπ εpK εpp

 , (6)

where the diagonal elements εii are the PID efficiencies, and the non-diagonal elements (εi j, i 6= j)
represent the probability of misidentifying a species i as a different species j.

The abundance vectors for pions, kaons and protons are defined as

~Ameas =

πmeas
Kmeas
pmeas

 and ~Atrue =

πtrue
Ktrue
ptrue

 , (7)

where the elements of ~Ameas (~Atrue) represent the measured (true) abundances of each species. The
diagonal elements εii of the PID matrix are then defined as

εii =
Ni identified as i

Ai
true

. (8)

Techniques to estimate the matrix elements are discussed in Section 3. The abundance vectors ~Ameas and
~Atrue are linked by the following relation:

πmeas
Kmeas
pmeas

=

εππ επK επp
εKπ εKK εKp
εpπ εpK εpp

ᵀ

·

πtrue
Ktrue
ptrue

 . (9)

Inverting the ε
ᵀ
PID matrix, the physical quantities are then extracted via:

~Atrue = (εᵀ
PID)

−1×~Ameas. (10)

The εPID matrix elements have functional dependences on many variables, primarily pT and collision
system. Other second-order dependences (for example pseudorapidity, event multiplicity, and centrality)
can also be studied depending on the specific track selections and PID strategies applied.

The contamination of the species j due to a different species i (c ji) is the number of particles belonging
to species i that are wrongly identified as j (Ni identified as j), divided by the total number of identified j
particles (A j

meas) [7]:

c ji =
Ni identified as j

A j
meas

, i 6= j. (11)

Contamination should not be confused with the misidentification probabilities defined in Eq. 6, which do
not depend on the real abundances. The connection between contamination and misidentification is:

c ji =
εi jAi

true

ε j jA
j
true +∑ j 6=k ε jkAk

true

. (12)
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There is usually a trade-off between efficiency and contamination. Both depend on the PID strategy (e.g.
choice of detectors), the detector response, and the priors used, all of which are momentum-dependent.
The contamination is additionally driven by the real abundances.

An accurate estimate of the contamination c ji depends on the real abundances, and it must be determined
with data-driven techniques (or with Monte Carlo simulations with abundances corresponding to what is
found in the data).

Although the PID matrix elements are independent of the real abundances, they still depend on the
choice of priors. They are therefore evaluated consistently as long as the same set of priors is used
both in the data analysis and for the Monte Carlo simulations, provided that the detector responses are
simulated correctly. In addition, a choice of priors that lies closer to the true abundances allows the
best compromise to be found between the maximisation of the efficiency and the minimisation of the
contamination probabilities. Considering that any systematic uncertainties in the detector response will
be amplified if the efficiency is low or if the contamination probabilities are large, the method becomes
more effective as the priors tend closer to reality. An extreme example of this would be the identification
of pions and muons using equal priors for all species, as the two species are difficult to distinguish from
each other (εππ ≈ εµµ ≈ 0.5 and επµ ≈ εµπ ≈ 0.5). In such a case, even a small discrepancy in the
description of the detector response in Monte Carlo would cause a fluctuation in εi j, leading to a large
uncertainty in the estimate of the pion yield; a choice of priors corresponding to the true abundances
would prevent this from happening.

In cases where the detector responses are well separated between different species, the priors do not
need to correspond to the true abundances, and could even be flat. The differences between different
choices can then be used to provide an estimate of the systematic uncertainties depending on the current
knowledge of the detector response. The influence of the choice of priors is further discussed as part of
the analyses presented in Section 4.

The combination of probabilities can also be used to identify and reduce the level of unphysical back-
ground that may arise in PID analyses due to track misassociation between detectors. For example, the
fraction of TPC tracks that are not correctly associated with the corresponding TOF hit increases with
the multiplicity of the event, and depends on the spatial matching window used in the reconstruction to
associate a TOF hit to a track. In ALICE this effect only plays a role in Pb–Pb and p–Pb collisions,
and even in the most central Pb–Pb collisions it remains below 10% for tracks with momentum above
1 GeV/c. In these cases, a mismatch probability can be defined based on e.g. the measured flight time
being uncorrelated with the track reconstructed with the ITS and TPC due to the TOF hit being produced
by another particle.

2.3 Priors in ALICE

As discussed in Section 2.1, an analysis using the Bayesian approach is expected to be moderately
dependent on the choice of priors. Separate sets of priors were evaluated for each collision system.
They were evaluated by means of an iterative procedure on data taken in 2010 and 2013 from pp, Pb–Pb,
and p–Pb collisions at

√
s = 7TeV,

√
sNN = 2.76TeV and

√
sNN = 5.02 TeV, respectively, and were

computed as a function of transverse momentum. Priors were also determined as a function of centrality
for Pb–Pb collisions, and of the multiplicity class (based on the signal in the V0A detector) for p–Pb data.
All of the priors were obtained at mid-rapidity, |η |< 0.8.

The absolute normalisation of the priors is arbitrary, and was chosen so as to normalise all of the priors to
the abundance of pions. The value of the priors for pions is thereby set to unity for all pT. Flat priors (i.e.
1 for all species) are applied at the beginning of the iterative procedure. Bayesian posterior probabilities
Pn(Hi|S) are computed using the priors obtained in step n, as defined in Eq. 5. These probabilities are
then used in turn as weights to fill identified pT spectra Y (Hi, pT) for the step n+ 1 starting from the

7
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inclusive (unidentified) measured pT spectra:

Yn+1(Hi, pT) = ∑
S

Pn(Hi|S), (13)

where the summation is performed for all signals S induced by particles of a given pT in the sample. It is
then possible to obtain a new set of priors Cn+1 from the relative ratios of the identified spectra according
to

Cn+1(Hi, pT) =
Yn+1(Hi, pT)

Yn+1(Hπ , pT)
. (14)

The procedure is then iterated, and the extracted prior values converge progressively with each iteration.
The values of the priors are shown in the left panel of Fig. 2 for the K/π ratio obtained using data from
p–Pb collisions. The convergence of this procedure is illustrated in the right-hand panel, as a ratio of the
priors for successive steps. A satisfactory convergence is obtained after 6–7 iterations.
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Fig. 2: An example of the iterative prior extraction procedure for p–Pb data (for the 10–20% V0A multiplicity
class). The extracted K/π ratio of the priors is shown as a function of pT at each step of the iteration (left) and as
a ratio of the value between each successive step (right). Step 0 refers to the initial ratio, which is set to 1.

A set of priors was obtained for global tracks, defined as tracks reconstructed in both the ITS and TPC.
This set is referred to in the following as C(Hi)TPC (the “standard priors”). This set of priors is then
propagated to other detectors using “propagation factors” Fα , which are detector-specific and dependent
on transverse momentum. In some cases these multiplicative factors can also be charge-dependent (this
is true for EMCal, for example). Fα , which is obtained for each detector via Monte Carlo, takes into
account the particles reaching the outer detectors, as well as the acceptances of the outer detectors and
their corresponding energy thresholds. The abundances measured by TOF and TPC will differ due to
these effects. The requirement of a given detector therefore changes the priors. For an outer detector α ,
the priors for a track with momentum pT are determined as

C(Hi)α(pT) = Fα(pT)×C(Hi)TPC(pT). (15)

Priors are currently propagated for TRD, TOF, EMCal and HMPID. Priors were also generated for tracks
that are obtained using only ITS hits. These were used for the spectrum analysis at low momentum [9].
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In the analyses presented in this paper, the propagation procedure of priors from TPC to TOF was tested
extensively.

Since the priors correspond to relative particle abundances, it is possible to directly compare the priors
obtained from the iterative procedure with the abundances measured by ALICE [8, 10, 21]. Comparisons
between the priors and the measured p/π and K/π ratios are shown in Fig. 3 for pp and Pb–Pb collisions
at
√

s = 7 TeV and
√

sNN = 2.76 TeV, respectively, and in Fig. 4 for p–Pb collisions at
√

sNN = 5.02 TeV.
In some cases the priors cover a larger range than the measurements made by ALICE.

In order to make these comparisons, the priors were corrected by several factors to take into account the
different selections used in the physics analyses and in the priors computation. Since the standard priors
are provided for the TPC case, only the tracking efficiency correction was applied. Additional conver-
sions from pseudorapidity intervals (used for the priors) to rapidity intervals (used for the measurement)
were also applied, as well as an average feed-down correction derived from the Pb–Pb analysis [10].
This feed-down mainly applies to protons from the decays of Λ baryons.

The priors (open symbols) and the measured abundances (filled symbols) are consistent with one another
within roughly 10% over a wide momentum range for all centrality ranges (for Pb–Pb collisions) and
V0A multiplicity classes (for p–Pb collisions). The choice to use feed-down corrections evaluated in
a given system leads to better agreement at low momenta in Pb–Pb collisions than in p–Pb collisions.
However, at high momenta, where the PID performance is better exploited, the results are independent of
this correction. The overall level of agreement is satisfactory, as the priors represent a realistic description
of the various particle abundances.
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Fig. 3: The proton/pion ratio (left) and kaon/pion ratio (right), as measured by ALICE [8, 10] using TPC and
TOF (filled symbols), compared with the standard priors as described in the text (open symbols) for Pb–Pb and
pp collisions. For Pb–Pb, the results are reported for different centrality classes. Particle ratios are calculated for
mid-rapidity, |y|< 0.5. The double ratios (the measured abundances divided by the Bayesian priors) are shown in
the lower panels.

It is also important to test whether there is any dependence of the final result on the set of priors used. To
perform these tests, it is possible to use alternative sets of priors as well as flat priors, which essentially
combine the probabilities from the different detectors without weighting them with Bayesian priors.
Slightly different sets of priors can be obtained by varying the track selection parameters. An example
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of a systematic check on the dependence on varying the set of priors is discussed in Section 4.2 for the
D0 case.

2.4 Bayesian PID strategies

Once the Bayesian probability for each species (p, K, π , etc.) has been calculated for a given track, the
PID selection may be applied with a variety of selection criteria. The three criteria applied in this paper
are:

– Fixed threshold: The track is accepted as belonging to a species if the probability for this is greater
than some pre-defined value. As an example, the choice of a 50% threshold means that a particle
will only be accepted as a kaon if its Bayesian probability of being a kaon is greater than 50%. Note
that this strategy is not necessarily exclusive, as a threshold of less than 50% could lead to multiple
possible identities. As already discussed, a selection on the Bayesian probability corresponds to a
purity requirement of the signal if the priors reflect the true particle abundances.

– Maximum probability: The track is accepted as the most likely species (i.e. the species with the
highest probability).

– Weighted: All tracks reaching the PID step of the analysis are accepted, with a weight different
from unity applied to their yield. The weight is defined as the product of the Bayesian probabilities
obtained for the tracks involved (e.g. in D0→ K−π+, this is the kaon probability of the negative
track multiplied by the pion probability of the positive track). The final result is corrected for the
average weight determined in Monte Carlo simulations in the same way as is done for the PID
efficiency in other methods.

The fixed threshold method is compared with nσ PID as part of the benchmark analysis (see Section 3).
The maximum probability method is used in the single-particle spectrum analysis described in Sec-
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tion 4.1 and for the Λ+
c baryon analysis in Section 5. Finally, all three of the aforementioned methods

are tested for the analysis of D0→ K−π+ in Section 4.2.

3 Benchmark analysis on two-prong decay channels

High-purity samples of identified particles were selected via the study of specific decay channels. These
samples served as a baseline for validating the Monte Carlo tools that are normally used to estimate
the efficiencies and misidentification probabilities (i.e. the εPID matrix discussed in Section 2) of the
Bayesian PID approach. The methodology developed in this section was also applied to the nσ PID
approach, providing an important cross-check.

3.1 Description of the method

The following decays were used to obtain high-purity samples of three different species:

– K0
S→ π−π+ to study charged pions;

– Λ→ pπ− (and respective charge conjugates) to study protons; and

– φ → K−K+ to study charged kaons.

The first two cases are true V0 decays, comprising two charged prongs originating from a secondary
vertex displaced from the interaction point, whereas the daughters of the φ meson originate from the
primary interaction vertex due to its shorter lifetime. For conciseness, all of these are referred to as V0

decays in this paper.

Here we report results based on the p–Pb data set, testing the PID method using both TPC and TOF. The
p–Pb data sample is less affected by background uncertainties than the Pb–Pb sample when perform-
ing fits of the invariant mass spectra, due to the smaller amount of combinatorial background. This is
especially true for the φ analysis.

Different track selection criteria were applied in order to select daughter particles coming either from the
primary vertex (for the φ case) or from a secondary vertex (for the K0

S and Λ cases). For a given V0, a
fit of the combinatorial invariant mass distribution allows the background to be subtracted and the yield
of V0 decays to be extracted. The estimated yield is considered to be a pure sample of a given species
(a precise measurement of the total number of particles of a given species in a given data set). This
estimation was done without applying any PID selections. Then the exercise was repeated applying PID
selections on each of the two prongs, selecting between pions, kaons and protons. The comparison with
the number of positively identified secondary prongs determines the efficiency and the misidentification
with respect to the values estimated when not applying PID.

Figure 5 shows examples of the fitting procedure for the K0
S invariant masses for 2< pπ

T < 3GeV/c. From
left to right, the panels show the analysis without PID and then requiring the identification of a positive
pion, kaon, or proton, respectively. The K0

S signal (and background) fitted in the latter three cases,
compared with the results without applying PID, allow the extraction of the identification efficiency and
misidentification probabilities.

In order to reduce the background for the φ analysis, before starting the procedure, one of the two decay
tracks was ‘tagged’ using a PID selection requiring compatibility with the kaon hypothesis and then the
PID selection under study is applied on the other track. The tagging was performed with a 2σ selection
on a combination of the TPC and TOF signals.

The TPC and TOF signals are combined as |nComb
σ ( j)|=

√
(nTPC

σ ( j)2 +nTOF
σ ( j)2)/2. The same method

was also applied on the simulated sample in order to check the agreement between Monte Carlo and data
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Fig. 5: V0 fits to extract the yield and background for K0
S→ π−π+ in p–Pb collisions at

√
sNN = 5.02 TeV. From

left to right: no PID selections applied and selecting pions, kaons and protons using a specific PID strategy (here,
Bayesian probability > 0.2). The yield estimated from the second plot from the left (compared with the no-PID
yield result) gives a measure of the PID efficiency for the pions, while the remaining ones give information about
misidentification.

on the estimated quantities. This serves as a validation for the Monte Carlo estimation of the efficiency
of a given PID strategy, as well as for the subsequent corrections required in order to extract physics
results.

3.2 Comparison of PID efficiencies between data and Monte Carlo

The PID matrix elements obtained for different Bayesian probability thresholds are presented here. An
example for the highest purity case considered in this work (Bayesian probability greater than 80%) is
shown in Fig. 6. Each plot represents a row of the εPID matrix for a given species i, with the i = j points
corresponding to the PID efficiencies (εii) and the i 6= j points corresponding to the misidentification
probabilities (εi j). The matrix was evaluated separately for positively and negatively charged tracks.
As no difference was found between the two cases, the results shown here were averaged over both
charges. For Monte Carlo, the PID hypothesis was tested both via the true particle identity available in
the simulation and by applying the same procedure as for the data.

0.5 1 1.5 2 2.5 3 3.5 4

 (
i,
j)

P
ID

ε

0.0

0.2

0.4

0.6

0.8

1.0

±πi = 

ALICE

 = 5.02 TeVNNsPb −p

(j) > 0.8P

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

±i = K

±πj = 
±j = K

pj = p,

)c (GeV/
T

p
0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

pi = p,

Data

MC

Fig. 6: εPID matrix elements in p–Pb collisions after selection with a Bayesian probability greater than 80%.
Comparisons with Monte Carlo (open symbols) are also shown.

As can be seen from Fig. 6, the efficiencies and misidentification probabilities can be evaluated very
precisely. The agreement between data and Monte Carlo is good, both in shape and absolute value.
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The general features of the PID strategies are also described well, and behave as expected: using a
high threshold maximises the purity, but also sharply reduces the efficiency. Nevertheless, even for
P ≥ 80%, where the efficiency estimate is more sensitive to the description of the detector responses in
the simulations, the agreement with Monte Carlo remains within 5% below 3 GeV/c.

The analysis was repeated using 2σ and 3σ selections on the combined TOF and TPC signals, as dis-
cussed above, to identify the three hadron species. The result is shown in Fig. 7 for the 2σ case. As
expected, the εPID matrix elements have different values from the 80% Bayesian probability threshold
(given that the nComb

σ selection is somewhat more inclusive), and the probability of misidentification in-
creases accordingly. The agreement between Monte Carlo and data for the misidentification probabilities
is worse in the nσ case than in the Bayesian case for kaons misidentified as pions. However, there remains
a good agreement between Monte Carlo and data overall. The efficiencies are below the values expected
from a perfectly Gaussian signal; a Monte Carlo or data-driven evaluation of the PID strategy efficiency
is therefore mandatory. The non-Gaussian tail of the TOF signal [18], caused by charge induction on
pairs of neighbouring readout pads, plays a significant role in this discrepancy. The mismatch fraction is
also not negligible in p–Pb collisions, being ∼2% above 1 GeV/c.
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2- and 3σ selections on the combined TPC and TOF signal.

For a more detailed comparison, the ratios between data and Monte Carlo are presented in Figs. 8 and 9
for efficiencies obtained using different Bayesian probability thresholds, and a 2σ or 3σ PID selection,
respectively. The agreement is very similar (within ∼5%) for both methods. A larger difference is
seen for kaons when using a very high Bayesian probability threshold (corresponding to a “high purity”
strategy). However, such an approach could still be beneficial in physics analyses where an efficiency
correction is not needed (such as analyses investigating Bose-Einstein correlations [15] or the flow of
identified particles [22]). The uncertainties reported in these plots are purely statistical. Apart from the
case of kaons extracted from φ decays, the statistical uncertainties on the Monte Carlo simulations give
the largest contribution to the uncertainties shown here. The φ -meson invariant mass plots are affected by
a larger combinatorial background in the data sample when PID is not requested (i.e. in the denominator
of the efficiency). As the ratios of data to Monte Carlo for both Bayesian and nσ PID are close to unity
in Figs. 8 and 9, it can be concluded that the systematic uncertainties from the PID procedure are well
under control in both cases.

In summary, the V0 analysis technique described in this section serves not only as a validation of the
quality of the Monte Carlo description of the various detector responses, but can also be used in data and
simulations to validate different PID strategies and track selections for any kind of analysis. Finally, it
provides a tool to investigate the systematic uncertainties that arise due to the PID selection.

4 Bayesian approach applied to physics analyses

In this section we present validations of the Bayesian PID approach for two analyses already published
by the ALICE Collaboration in pp collisions at

√
s = 7 TeV: identified pion, kaon and proton spectra [8]

and D0 → K−π+ [13]. While the previous papers remain the proper references for the extraction of
the physical quantities such as cross sections, and for theory comparisons, this paper shows the results
obtained by applying the Bayesian approach to the PID part of those analyses.

4.1 Identified hadron spectra

The consistency of the Bayesian PID technique was tested using the tools described in the previous
sections to obtain the pT spectra of pions, kaons and protons. This analysis used a data sample of
1.2×108 inelastic pp collisions at

√
s = 7 TeV that was collected in 2010.

The results are compared here with similar measurements that were already reported in [8]. In the quoted
paper, different PID techniques were used depending on the detectors involved in different pT ranges (nσ

for ITS only and for the combined TPC and TOF signals, and unfolding techniques for TOF and HMPID
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separately). Charged kaon spectra were also measured via the identification of their decays (measurement
of the kink topology). Full details of the original analysis, including the event selection criteria (which
were also used here) and the procedure used to merge the various PID techniques and detectors, can be
found in [8].

The efficiency, detector acceptance, and other correction factors, were estimated using Monte Carlo
samples that simulated the detector conditions run-by-run. The simulation was based on the PYTHIA6.4
event generator [23] using the Perugia0 tune [24], with events propagated through the detector using
GEANT3 [25].

Only the TPC and TOF detectors were used for PID. The particle species were identified using the max-
imum probability method outlined in Section 2.4. The identification of charged hadrons used different
detector combinations in different momentum ranges, as shown in Table 1. Although a Bayesian ap-
proach does not necessarily require such a division, it was chosen in order to make a closer comparison
with the analysis presented in [8]. In particular, the TOF efficiency drops very steeply at low momentum
due to the acceptance, meaning that the systematic uncertainty on the TOF efficiency would become
dominant and make the comparison difficult.

Hadron TPC TPC–TOF
π 0.2 ≤ pT ≤ 0.5 0.5 ≤ pT ≤ 2.5
K 0.3 ≤ pT ≤ 0.45 0.45 ≤ pT ≤ 2.5
p 0.5 ≤ pT ≤ 0.8 0.8 ≤ pT ≤ 2.5

Table 1: PID detectors and transverse momentum ranges (in GeV/c) used for the analysis of identified hadron
spectra.

The PID efficiency is higher than 95% for pions and protons, while for kaons it begins to decrease from
100% at 1 GeV/c to 75% at 2.5 GeV/c. The misidentification percentage is below 5% for pions and
protons for all pT, and reaches 20% for kaons at pT = 2.5GeV/c. In order to avoid the dependence
of the corrections on the relative abundances of each hadron species in the event generator, the spectra
were corrected for their respective PID efficiencies and for contamination using the εPID matrix method
described in Section 2.2. A 4×4 matrix (also including electrons) was defined for each pT interval. These
matrices were then inverted and used in Eq. 10 in order to obtain the spectra. In addition, the spectra
were corrected for the tracking, TPC–TOF matching and primary vertex determination efficiencies. The
contributions from secondary particles that were not removed by a selection based on the distance of
closest approach to the vertex were determined using a data-driven method, as explained in [8], and were
subtracted from the final spectra.

Figure 10 compares the minimum-bias charged hadron spectra from pp collisions at
√

s= 7 TeV obtained
from this analysis with the published result. A very good agreement within the uncertainties can be
observed between the pT spectra obtained using these different approaches. For this comparison, the
statistical uncertainties are shown for both analyses, while the systematic uncertainties that are not only
related to PID were only considered for the results published in [8]. The ratios of the spectra, presented
in the lower panels of Fig. 10, show an agreement within ±5% for all species.

A further check was performed testing the stability of the method against the priors used. The analysis
was repeated using flat priors, i.e. equal probabilities for the four particle species that are included in
the PID matrix (electrons, pions, kaons and protons). The muon priors were set to zero, their percentage
being negligible (with standard priors, they are estimated to be less than 2% with respect to all other
particle species). Despite considering quite an extreme case here in terms of varying the priors, the
pion and proton abundances were consistent with the result obtained with standard priors within 3%. A
decrease in the estimated pion abundance at pT > 1GeV/c resulted in a variation of up to 10% for kaons
in some pT intervals. The observed variations can be interpreted as being due to remaining uncertainties
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Fig. 10: Identified particle spectra from the Bayesian analysis, compared with the measurement reported by ALICE
in pp collisions at 7 TeV [8].

in the detector response; a naive set of priors, such as a set of flat priors, is generally expected to amplify
such effects.

4.2 Analysis of D0→ K−π+

This section presents a comprehensive overview of a variety of Bayesian PID strategies applied to the
analysis of D0→K−π+ (and charge conjugates) in pp collisions at

√
s = 7 TeV. The analysis was based

on a data sample of roughly 3× 108 events collected during RUN 1. The geometrical selections on the
displaced decay vertex topology matched those used in the ALICE measurement of D0→ K−π+ in pp
collisions reported in [13].

In order to make a detailed assessment of the Bayesian method, this analysis compares the results ob-
tained using each of the PID strategies outlined in Section 2.4. In each case, the PID method relied on
selecting an oppositely charged pair of tracks corresponding to a kaon and a pion. The TPC and TOF
detectors were used in conjunction with one another. For tracks without TOF information, the PID was
based on information from the TPC only.

For the fixed-threshold method, probability thresholds of 40%, 50%, 70%, and 80% were tested. Note
that in the case of the 40% threshold, there is the possibility that a daughter track may be compatible
with both the kaon and pion hypothesis; in such cases, the track was accepted as possibly belonging to
either species. For the maximum-probability and fixed-threshold methods, once the daughter tracks were
analysed, the candidate was accepted or rejected according to the following criteria:

– if both daughters were identified as possible kaons, the candidate was accepted both as a D0 and a
D0;

– if one daughter was identified as a kaon and the other as a pion, the candidate was accepted as a
D0 if the negative track was a kaon and the positive track was a pion, and vice-versa for D0;

– if neither daughter was identified as a kaon, the candidate was rejected;
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– if either daughter was not compatible with the kaon or the pion hypothesis, the candidate was
rejected.

The weighted method was implemented as defined in Section 2.4, whereby the invariant mass distribu-
tions were filled for each candidate with weights Wi. These weights are defined as

WD0 = PK−×Pπ+ , and

W
D0 = PK+×Pπ− ,

(16)

where Pi corresponds to the Bayesian probability assigned to each track for a given species i. In this case,
the PID efficiency from Monte Carlo corresponded to the average weight that was assigned to simulated
D0 mesons in each pT interval.

Once the invariant mass distributions in each pT interval had been obtained, the yields were fitted using a
Gaussian function for the signal and an exponential function to estimate the background. The raw signal
was extracted according to the integral of the fit to the signal distribution. In order to ensure the stability
of the fitting procedure, the width and mean of the Gaussian functions were kept the same in each pT
interval for all PID methods. To do this, the fit parameters were first determined for the nσ PID method
in each pT interval, and then fixed to those values in the fitting procedure for each other PID method.

Example invariant mass distributions obtained without PID, with nσ PID, and with Bayesian PID using
the maximum-probability strategy are shown in Fig. 11, with a logarithmic scale on the vertical axis.
There is a clearly visible increase in the signal-to-background ratio when using nσ PID as compared to
the analysis without PID, and a further increase when applying a Bayesian selection with the maximum-
probability strategy. Due to the large background and low statistical significance, it was not possible to
extract a stable yield for 1 < pT < 2 GeV/c without PID. For this reason, the results obtained without
PID are excluded for this pT interval in the following comparisons.
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Fig. 11: A comparison of the invariant mass distributions in three pT intervals for D0 candidates obtained without
PID, with nσ PID, and with Bayesian PID using the maximum probability condition. Due to the low statistical
significance, it was not possible to extract a stable signal without PID for 1 < pT < 2GeV/c, therefore this fit and
its results are not shown.

Full comparisons of the signal-to-background ratio and significance obtained for different PID strategies
are shown in Fig. 12. The statistical significance is defined as the signal divided by the square root of
the sum of the signal and background. The signal-to-background ratio increases significantly for all pT
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when using the nσ PID approach, as compared to not making a PID selection. A similar increase, of a
factor of at least 2, was seen in each of the Bayesian methods when compared with nσ PID.

As expected, the statistical significance of the signal was higher for the nσ PID than when no PID
selection was applied. At low pT, all but the strictest Bayesian selections (i.e. 80% probability threshold)
gave a further increase in significance over the nσ PID method, while at higher pT the significance of
these methods became similar to that of nσ PID. The 80% probability threshold yielded a lower statistical
significance than nσ PID for pT > 3GeV/c, whereas the performance of the two methods is equivalent
for pT ≤ 3GeV/c.
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The efficiencies for each particle identification method were obtained using charm-enriched Monte Carlo
simulations, as described in [13]. The PID efficiency was defined as the proportion of simulated D
mesons that passed the PID selection criteria, having already passed the other selections. In the case
of the weighted Bayesian PID method, as previously mentioned, the PID efficiency corresponded to an
average weight for true D0 candidates, and for the purposes of corrections was used in the same way as
the other PID efficiencies. The PID efficiencies obtained for each method are shown in Fig. 13.
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Fig. 13: A comparison of the PID efficiencies for D0→K−π+ obtained using various PID strategies, as a function
of pT.

When a stricter PID selection was applied (for example, an 80% probability threshold as compared to
a 70% threshold), the PID efficiency fell correspondingly. All of the Bayesian methods gave a lower
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PID efficiency than the nσ method. The observed significances and efficiencies highlight a benefit and
a potential drawback in using a strict Bayesian PID strategy: while a tighter PID selection gives a yield
of higher purity, it also requires a greater reliance on the Monte Carlo simulation to give an accurate
correction due to the reduced PID efficiency. However, it is important to note that this is not necessarily
inherent to the Bayesian PID method. For example, a very narrow nσ selection (e.g. at 0.5σ ) would also
yield a lower efficiency, leading to a similar degree of reliance on the Monte Carlo simulations; even a
2σ selection reduces the PID efficiency to 80%.

The corrected yields obtained using each particle identification method are compared in Fig. 14. In each
case, the ratio shown is the corrected yield divided by that obtained using nσ PID. As the candidates
selected by each of the Bayesian methods are a subset of those selected by the nσ approach, the un-
certainties on the corrected yields are assumed to be fully correlated and so almost cancel out in the
ratio.
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for (left) fixed probability thresholds, and (right) maximum probability and weighted Bayesian PID, and no PID.
The 5% systematic uncertainty on the nσ PID method is shown as a blue box at 0.5GeV/c.

It was found that there is a relatively good agreement between the Bayesian PID method and the nσ

PID method, even when very different probability thresholds are applied. Averaging over pT, the fixed
probability threshold methods give a systematic difference between 5 and 9%, increasing for the lower
probability thresholds. For the weighted and maximum-probability methods, the average deviations
from nσ are 3% and 7%, respectively. In every case this difference is of a similar order to the systematic
uncertainty of the nσ PID approach (∼5%) [13].

In effect, the difference of the corrected yield from the nσ result represents the systematic uncertainty
due to the choice of Bayesian PID method. Therefore it can be concluded that the PID systematic
uncertainties for the Bayesian approach are not much larger than those from the nσ approach. The
observed deviations also contain systematic contributions related to the yield extraction procedure.

A final check was made to ensure that the results remained independent of the choice of the prior prob-
ability distribution used. Ideally, the requirement of an external input should guide the measurement,
and fluctuations in these priors should not have a substantial effect on the final result that is obtained.
In order to test this, two modified sets of priors were prepared, with the proportion of kaons scaled up
and down by 10% for all pT. An analysis using these modified sets of priors was then performed and
compared to the analysis with the standard priors. The corrected yields using the modified priors were
divided by the yields using the standard set of priors for each Bayesian analysis method. It was found
that the average deviations from unity remained within roughly 2% for each set of alternative priors with
all of the Bayesian PID strategies. The smallest deviations were observed for the maximum probability
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and weighted methods, and for lower fixed probability thresholds.

In conclusion, since the corrected yield is largely independent of the choice of PID method, and consid-
ering the improvement in signal-to-background ratio and (at low pT) significance, we conclude that the
Bayesian PID method is a valid choice for the analysis of D0→ K−π+. However, it must be noted that
although the stricter Bayesian methods give a purer signal, they also create an increased reliance on the
Monte Carlo simulations to correct for the lower efficiencies, as well as introducing a greater dependence
on the choice of priors in those pT intervals that have lower statistical significance.

5 Application of Bayesian PID for Λ+
c analysis

In this section we present an exploratory study of Λ+
c → pK−π+ in pp collisions at

√
s = 7 TeV using

a Bayesian PID approach. This decay channel suffers from a high level of combinatorial background,
even in the relatively low-multiplicity environment of a pp collision. Due to the short decay length of
the Λ+

c (cτ = 59.9 µm [26]) and current limitations in the spatial resolution of the ITS, topological and
geometrical selections alone are not sufficient to reduce this background and extract a signal. This means
that a robust PID strategy is required to select Λ+

c candidates.

Here we compare analyses of Λ+
c → pK−π+ using the nσ approach, a Bayesian approach using the

maximum-probability criterion, and an alternative “minimum-σ” approach that mimics the Bayesian
strategy. This analysis used ∼3×108 events from pp collisions at

√
s = 7TeV collected during RUN 1.

Both the TPC and TOF responses were used for the nσ approach. A 3σ selection was applied on the TOF
signal for kaons, pions and protons at all pT, while in the TPC a pT-dependent nσ selection (between 2
and 3σ ) was applied for protons and kaons, and a 3σ selection was applied for pions at all pT. If the
track had a valid TOF signal, only this was used for the PID; otherwise the TPC response was used. For
the Bayesian PID method, the TPC and TOF responses were combined; in cases where the TOF signal
was not available, only the TPC response was used.

The minimum-σ strategy serves as a middle ground between the nσ analysis and the Bayesian approach.
It is also based on the deviation from the expected detector signal, but in this case only the species
resulting in the smallest nσ value is chosen for each track, making this an exclusive selection. The
TPC and TOF responses are combined by adding their respective nσ values in quadrature. The potential
benefit of this approach is that it uses similar logic to the Bayesian approach, without requiring the input
of any priors.

In order to build Λ+
c candidates, triplets of tracks were reconstructed and selected, based on PID and

topological selections. Pairs of oppositely charged tracks were reconstructed from the set of selected
tracks, and a secondary (decay) vertex was computed. Selections were applied to each pair based on
the distance of closest approach between the two tracks, and the distance between the primary and the
secondary vertex of the reconstructed pair. A third track was then associated to each selected pair to form
a triplet. The secondary vertex of the triplet was calculated and the Λ+

c candidates were selected using:

– the quality of the reconstructed vertex, which was determined using the quadratic sum of the
distances of the single tracks from the calculated secondary vertex;

– the distance between the primary and the secondary vertex of the triplet (decay length); and

– the cosine of the pointing angle. The pointing angle is the angle between the momentum vector
of the reconstructed Λ+

c candidate and the Λ+
c flight line reconstructed from the line joining the

primary and secondary vertices.

The invariant mass plots for pKπ candidates with 2 < pT < 6 GeV/c are shown in the left-hand panel
of Fig. 15 for the standard nσ PID approach (top), the alternative minimum-σ approach (middle) and
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Fig. 15: Invariant mass spectra of Λ+
c → pK−π+ using nσ PID, minimum-σ PID and Bayesian PID for (left)

2 < pT < 6 GeV/c and (right) 3 < pT < 4 GeV/c. Due to the low statistical significance, it was not possible to
extract a stable signal for nσ PID for 3 < pT < 4GeV/c, therefore this fit and its results are not shown.

Bayesian PID (bottom). Over this pT interval, the statistical significance determined from the yield
extraction (as defined in Section 4.2) is 4.4±1.0 for nσ PID, 5.1±1.0 for minimum-σ PID and 6.0±1.1
for Bayesian PID. In addition, the signal-to-background ratio is three times higher in the Bayesian case
than for nσ PID, with a background that is reduced by a factor of approximately seven. On the other
hand, the Bayesian PID method yields fewer Λ+

c candidates in the peak, indicating a lower selection
efficiency.

The equivalent invariant mass distributions for 3 < pT < 4 GeV/c are shown in the right-hand panel
of Fig. 15. In this case, the nσ PID approach yields an insufficient statistical significance to extract a
stable yield. As with the pT-integrated case, the statistical significance improves when using the other
two methods (2.7± 1.0 for minimum-σ and 4.4± 1.1 for Bayesian PID), and we again find a marked
improvement in the signal-to-background ratio for these two approaches. From this we conclude that
the Bayesian approach represents the best candidate PID method for future measurements of the Λ+

c
production cross section.

6 Conclusions and outlook

A Bayesian method for particle identification has been presented and validated for a variety of analy-
ses. A comparison between different PID selection methods in ALICE was performed, with a focus
on testing the suitability of Bayesian PID techniques. A selection based on the Bayesian probability
can be interpreted as a request on the purity, and therefore the main benefit of these techniques is that
they increase the purity of the extracted signal by combining information from different detectors via a
relatively simple technique.

The iterative procedure used to extract the prior probabilities (corresponding to the relative particle abun-
dances) was outlined for pp collisions at

√
s = 7TeV, p–Pb collisions at

√
sNN = 5.02TeV and Pb–Pb
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collisions at
√

sNN = 2.76TeV. In each collision system, and for every centrality and multiplicity class
studied in Pb–Pb and p–Pb collisions, the extracted priors were found to be consistent with the true
particle abundances seen in data.

The ability of Monte Carlo simulations to compute efficiencies and misidentification probabilities was
tested via high-purity samples of pions, kaons and protons from the two-prong decays K0

S → π−π+,
Λ → pπ−, and φ → K−K+ in p–Pb collisions at

√
sNN = 5.02TeV. Equivalent analyses were also

performed using nσ PID. It was found that the variation in the result when using Bayesian PID as opposed
to nσ PID was on the order of 5% in each case.

Comparisons between the Bayesian approach and PID methods used in measurements already published
by ALICE in pp collisions at

√
s = 7TeV were performed for the analysis of the pT-differential yields of

identified pions, kaons and protons. In this case, the previous analysis used a combination of nσ PID, un-
folding methods and spectra obtained with kinks. A simple maximum-probability Bayesian PID method
was used in this analysis. When compared, the results from nσ PID and Bayesian PID were found to be
consistent with one another within uncertainties.

A detailed comparison of different Bayesian PID strategies was performed for the analysis of D0 →
K−π+ in pp collisions at

√
s = 7TeV. Through the use of different probability thresholds, the trade-off

between selecting a purer sample and having a stronger dependence on the description of the detectors
in Monte Carlo simulations was demonstrated. An increase in the signal-to-background ratio over the
nσ PID method was seen for all pT for all of the tested Bayesian strategies. The statistical significance
was found to be similar or greater than nσ PID for all of the Bayesian methods other than a strict 80%
probability threshold. In every case, the corrected yield was found to be stable against the choice of PID
method when comparing with the nσ PID method used for D0 mesons. The dependence on the choice
of priors was also investigated, and it was found that the uncertainty on the corrected yield due to the
choice of priors was within ∼2%. We conclude that the systematic uncertainties arising from the choice
of Bayesian PID method are of a similar order to those of the nσ approach.

In summary, a good level of consistency is seen in both of the full analyses considered in Sections 4.1
and 4.2 with respect to previously reported results. Because of this, we conclude that the validity of the
Bayesian PID approach has been successfully assessed.

Furthermore, the improved performance of the Bayesian PID approach in certain scenarios will prove
beneficial for future analyses. The case of the Λ+

c baryon was presented as an example where a simple nσ

approach is unable to yield a stable signal, while the Bayesian approach is able to combine information
from the different detectors effectively without the need to develop a complex variable-σ selection. This
presents a promising option for a more comprehensive study of the Λ+

c production cross section in pp
and p–Pb collisions.

The analyses presented here are currently limited to charged hadrons detected in the TPC and TOF
detectors. However, the method can be extended to other particle species and detectors within the ALICE
central barrel, and we expect to further test and refine these techniques in future. In particular, it will be
possible to examine the performance of the Bayesian approach for electron identification with the TRD
at full azimuthal coverage in RUN 2.
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23

http://dx.doi.org/10.1142/S0217751X14300440
http://arxiv.org/abs/1402.4476
http://dx.doi.org/10.1007/BF01551452
http://dx.doi.org/10.1140/epja/i2008-10746-7
http://arxiv.org/abs/0902.4377
http://dx.doi.org/10.1088/1674-1137/32/3/008


Particle identification in ALICE: a Bayesian approach ALICE Collaboration

identification in ALICE experiment at LHC,” in Computing in High Energy Physics and Nuclear
Physics. Proceedings of CHEP04 Conference, Interlaken, Switzerland, 2004. 2005.

[6] ALICE Collaboration, F. Carminati et al., “ALICE: Physics performance report, volume I,” J.
Phys. G30 (2004) 1517–1763.

[7] ALICE Collaboration, B. Alessandro et al., “ALICE: Physics performance report, volume II,” J.
Phys. G32 (2006) 1295–2040.

[8] ALICE Collaboration, B. Abelev et al., “Measurement of pion, kaon and proton production in
proton-proton collisions at

√
s = 7 TeV,” Eur. Phys. J. C75 (2015) 226, arXiv:1504.00024

[nucl-ex].
[9] ALICE Collaboration, B. Abelev et al., “Production of charged pions, kaons and protons at large

transverse momenta in pp and Pb–Pb collisions at
√

sNN = 2.76 TeV,” Phys. Lett. B736 (2014)
196–207, arXiv:1401.1250 [nucl-ex].

[10] ALICE Collaboration, B. Abelev et al., “Pion, Kaon, and Proton Production in Central Pb–Pb
Collisions at

√
sNN = 2.76 TeV,” Phys. Rev. Lett. 109 (2012) 252301, arXiv:1208.1974

[hep-ex].
[11] ALICE Collaboration, B. Abelev et al., “Measurement of electrons from beauty hadron decays in

pp collisions at
√

s = 7 TeV,” Phys. Lett. B721 (2013) 13–23, arXiv:1208.1902 [hep-ex].
[12] ALICE Collaboration, B. Abelev et al., “Measurement of electrons from semileptonic

heavy-flavor hadron decays in pp collisions at
√

s = 2.76 TeV,” Phys. Rev. D91 (2015) 012001,
arXiv:1405.4117 [nucl-ex].

[13] ALICE Collaboration, B. Abelev et al., “Measurement of charm production at central rapidity in
proton-proton collisions at

√
s = 7 TeV,” JHEP 1201 (2012) 128, arXiv:1111.1553 [hep-ex].

[14] ALICE Collaboration, B. Abelev et al., “K∗(892)0 and φ(1020) production in Pb–Pb collisions at√
sNN = 2.76 TeV,” Phys. Rev. C91 (2015) 024609, arXiv:1404.0495 [nucl-ex].

[15] ALICE Collaboration, J. Adam et al., “Two-pion femtoscopy in p–Pb collisions at
√

sNN = 5.02
TeV,” Phys. Rev. C91 (2015) 034906, arXiv:1502.00559 [nucl-ex].

[16] ALICE Collaboration, J. Adam et al., “Precision measurement of the mass difference between
light nuclei and anti-nuclei,” Nature Phys. 11 (2015) 811–814, arXiv:1508.03986 [nucl-ex].

[17] ALICE Collaboration, “Technical Design Report of the Time Projection Chamber.” CERN/LHCC
2000-001, 2000. https://edms.cern.ch/document/398930/1.

[18] A. Akindinov et al., “Performance of the ALICE Time-Of-Flight detector at the LHC,” Eur. Phys.
J. Plus 128 (2013) 44.

[19] W. Blum and L. Rolandi, Particle Detection with Drift Chambers. Springer-Verlag, 1994.
[20] P. Gregory, Bayesian Logical Data Analysis for the Physical Sciences. Cambridge University

Press, 2005.
[21] ALICE Collaboration, B. Abelev et al., “Multiplicity Dependence of Pion, Kaon, Proton and

Lambda Production in p–Pb Collisions at
√

sNN = 5.02 TeV,” Phys. Lett. B728 (2014) 25–38,
arXiv:1307.6796 [nucl-ex].

[22] ALICE Collaboration, B. Abelev et al., “Elliptic flow of identified hadrons in Pb–Pb collisions at√
sNN = 2.76 TeV,” JHEP 06 (2015) 190, arXiv:1405.4632 [nucl-ex].
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130 Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France
131 V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
132 Variable Energy Cyclotron Centre, Kolkata, India
133 Warsaw University of Technology, Warsaw, Poland
134 Wayne State University, Detroit, Michigan, United States
135 Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
136 Yale University, New Haven, Connecticut, United States
137 Yonsei University, Seoul, South Korea
138 Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms,
Germany

32


	1 Introduction
	2 Bayesian PID in ALICE
	2.1 PID signals in ALICE
	2.2 PID efficiency and contamination
	2.3 Priors in ALICE
	2.4 Bayesian PID strategies

	3 Benchmark analysis on two-prong decay channels
	3.1 Description of the method
	3.2 Comparison of PID efficiencies between data and Monte Carlo

	4 Bayesian approach applied to physics analyses
	4.1 Identified hadron spectra
	4.2 Analysis of D0K-+

	5 Application of Bayesian PID for c+ analysis
	6 Conclusions and outlook
	A The ALICE Collaboration

