74 research outputs found

    Characterization of Dextromethorphan And Dextrorphan Uptake by a Putative Glutamic Acid Carrier and Passive Diffusion Across Brain Microvessel Endothelium

    Get PDF
    Read More: http://informahealthcare.com/doi/abs/10.3109/10717549309022764The mechanisms of uptake and transcellular passage of dextromethorphan (DM) and its major metabolite dextrorphan (DX) across the endothelial component of the blood–brain barrier have been investigated with primary cultures of bovine brain microvessel endothelial cells (BMECs). The uptake of [14C]DM and [14C]DX by BMECs was observed to be temperature-sensitive and saturable, with approximate Km's of 0.12 and 0.29 mM and Vmax's of 9.2 and 11.0 pmol/mg/min, respectively. The BMEC uptake of [14C] DM was inhibited half-maximally by approximately 0.57 mM L-glutamic acid, 0.71 mM N-methyl-d-asparatate (NMDA), and 0.99 mM DL-threo-β-hydroxyaspartic acid. The BMEC uptake of [14C]DX was inhibited half-maximally by approximately 0.48 mM L-glutamic acid, 1.50 mM NMDA, and 0.69 mM DL-threo-β-hydroxyaspartic acid. Conversely, the bidirectional passage of DM and DX across confluent BMEC monolayers occurred at a faster rate but was neither saturable nor inhibited by high concentrations of glutamic acid, NMDA, or unlabeled DM or DX. These results suggest that DM and DX are capable of interacting with a low-capacity glutamic acid-type carrier mechanism on the apical surface of BMECs. However, the net transfer of these agents across BMEC monolayers appeared to be more rapid and passive in nature

    Early Osmotherapy in Severe Traumatic Brain Injury : An International Multicenter Study

    Get PDF
    The optimal osmotic agent to treat intracranial hypertension in patients with severe traumatic brain injury (TBI) remains uncertain. We aimed to test whether the choice of mannitol or hypertonic saline (HTS) as early (first 96 h) osmotherapy in these patients might be associated with a difference in mortality. We retrospectively analyzed data from 2015 from 14 tertiary intensive care units (ICUs) in Australia, UK, and Europe treating severe TBI patients with intracranial pressure (ICP) monitoring and compared mortality in those who received mannitol only versus HTS only. We performed multi-variable analysis adjusting for site and illness severity (Injury Severity Score, extended IMPACT score, and mean ICP over the first 96 h) using Cox proportional hazards regression. We collected data on 262 patients and compared patients who received early osmotherapy with mannitol alone (n = 46) with those who received HTS alone (n = 46). Mannitol patients were older (median age, 49.2 (19.2) vs. 40.5 (16.8) years; p = 0.02), with higher Injury Severity Scores (42 (15.9) vs. 32.1 [11.3]; p = 0.001), and IMPACT-TBI predicted 6-month mortality (34.5% [23-46] vs. 25% [13-38]; p = 0.02), but had similar APACHE-II scores, and mean and maximum ICPs over the first 96 h. The unadjusted hazard ratio for in-hospital mortality in patients receiving only mannitol was 3.35 (95% confidence interval [CI], 1.60-7.03; p = 0.001). After adjustment for key mortality predictors, the hazard ratio for in-hospital mortality in patients receiving only mannitol was 2.64 (95% CI, 0.96-7.30; p = 0.06). The choice of early osmotherapy in severe TBI patients may affect survival, or simply reflect clinician beliefs about their different roles, and warrants controlled investigation.Peer reviewe

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Inflammation and blood-brain barrier breach remote from the primary injury following neurotrauma

    Get PDF
    Background: Following injury to the central nervous system, increased microglia, secretion of pro- and anti-inflammatory cytokines, and altered blood-brain barrier permeability, a hallmark of degeneration, are observed at and immediately adjacent to the injury site. However, few studies investigate how regions remote from the primary injury could also suffer from inflammation and secondary degeneration. Methods: Adult female Piebald-Viral-Glaxo (PVG) rats underwent partial transection of the right optic nerve, with normal, age-matched, unoperated animals as controls. Perfusion-fixed brains and right optic nerves were harvested for immunohistochemical assessment of inflammatory markers and blood-brain barrier integrity; fresh-frozen brains were used for multiplex cytokine analysis. Results: Immediately ventral to the optic nerve injury, immunointensity of both the pro-inflammatory biomarker inducible nitric oxide synthase (iNOS) and the anti-inflammatory biomarker arginase-1 (Arg1) increased at 7 days post-injury, with colocalization of iNOS and Arg1 immunoreactivity within individual cells. CD11b+ and CD45+ cells were increased 7 days post-injury, with altered BBB permeability still evident at this time. In the lower and middle optic tract and superior colliculus, IBA1+ resident microglia were first increased at 3 days; ED1+ and CD11b+ cells were first increased in the middle and upper tract and superior colliculus 7 days post-injury. Increased fibrinogen immunoreactivity indicative of altered BBB permeability was first observed in the contralateral upper tract at 3 days and middle tract at 7 days post-injury. Multiplex cytokine analysis of brain homogenates indicated significant increases in the pro-inflammatory cytokines, IL-2 and TNFa, and anti-inflammatory cytokine IL-10 1 day post-injury, decreasing to control levels at 3 days for TNFa and 7 days for IL-2. IL-10 was significantly elevated at 1 and 7 days post-injury with a dip at 3 days post-injury. Conclusions: Partial injury to the optic nerve induces a complex remote inflammatory response, characterized by rapidly increased pro- and anti-inflammatory cytokines in brain homogenates, increased numbers of IBA1+ cells throughout the visual pathways, and increased CD11b+ and ED1+ inflammatory cells, particularly towards the synaptic terminals. BBB permeability can increase prior to inflammatory cell infiltration, dependent on the brain region

    Estimates of abundance and trend on a Blue Whale feeding ground off Isla de Chiloé, Chile

    Get PDF
    Since 1970, blue whales (Balaenoptera musculus) have been seen feeding in the waters off southern Chile during the summer and autumn (December to May). Investigation of the genetic, acoustic and morphological characteristics of these blue whales shows that they are a distinct but unnamed subspecies, called the Chilean blue whales. Photo-identification surveys have been conducted in the waters off northwestern Isla Grande de Chiloé, southern Chile from 2004–2012 and Isla Chañaral, central Chile in 2012. Over this time, 1,070 blue whales were encountered yielding, after photo-quality control, 318 and 267 unique photographs of the left and right side of the flank respectively. Using mark-recapture analysis of left and right side photographs collected from Isla Grande de Chiloé (2004–2012), open population models estimate that ~570–760 whales are feeding seasonally in this region. POPAN superpopulation abundance estimates for the same feeding ground in 2012 are 762 (95% confidence intervals, CI = 638–933) and 570 (95% CI 475–705) for left and right side datasets respectively, very similar to results from closed population models. Estimates of trend revealed strong variation in abundance, peaking in 2009 and [suggesting] fluctuating use in the survey area over time, likely related to the density of their prey. High inter-annual return rates suggest a degree of site-fidelity of individuals to Isla Grande de Chiloé and that the number of whales using this feeding ground is relatively small

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore