175 research outputs found

    Risk propensity in the foreign direct investment location decision of emerging multinationals

    Get PDF
    A distinguishing feature of emerging economy multinationals is their apparent tolerance for host country institutional risk. Employing behavioral decision theory and quasi-experimental data, we find that managers’ domestic experience satisfaction increases their relative risk propensity regarding controllable risk (legally protectable loss), but decreases their tendency to accept non-controllable risk (e.g., political instability). In contrast, firms’ potential slack reduces relative risk propensity regarding controllable risk, yet amplifies the tendency to take non-controllable risk. We suggest that these counterbalancing effects might help explain observation that risk-taking in FDI location decisions is influenced by firm experience and context. The study provides a new understanding of why firms exhibit heterogeneous responses to host country risks, and the varying effects of institutions

    Dichromatic dark matter

    Get PDF
    Both the robust INTEGRAL 511 keV gamma-ray line and the recent tentative hint of the 135 GeV gamma-ray line from Fermi-LAT have similar signal morphologies, and may be produced from the same dark matter annihilation. Motivated by this observation, we construct a dark matter model to explain both signals and to accommodate the two required annihilation cross sections that are different by more than six orders of magnitude. In our model, to generate the low-energy positrons for INTEGRAL, dark matter particles annihilate into a complex scalar that couples to photon via a charge-radius operator. The complex scalar contains an excited state decaying into the ground state plus an off-shell photon to generate a pair of positron and electron. Two charged particles with non-degenerate masses are necessary for generating this charge-radius operator. One charged particle is predicted to be long-lived and have a mass around 3.8 TeV to explain the dark matter thermal relic abundance from its late decay. The other charged particle is predicted to have a mass below 1 TeV given the ratio of the two signal cross sections. The 14 TeV LHC will concretely test the main parameter space of this lighter charged particle.University of Wisconsin--Madison (Start-up funds)SLAC National Accelerator Laboratory (US DOE contract DE-AC02-76SF00515)Aspen Center for Physics (NSF Grant No. 1066293)United States. National Aeronautics and Space Administration (Einstein Postdoctoral Fellowship grant number PF2-130102)Smithsonian Astrophysical Observatory (Chandra X-ray Center, NASA under contract NAS8-03060

    Double Diffraction Dissociation at the Fermilab Tevatron Collider

    Get PDF
    We present results from a measurement of double diffraction dissociation in pˉp\bar pp collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap of width Δη0>3\Delta\eta^0>3 (overlapping η=0\eta=0) is found to be 4.43±0.02(stat)±1.18(syst)mb4.43\pm 0.02{(stat)}{\pm 1.18}{(syst) mb} [3.42±0.01(stat)±1.09(syst)mb3.42\pm 0.01{(stat)}{\pm 1.09}{(syst) mb}] at s=1800\sqrt{s}=1800 [630] GeV. Our results are compared with previous measurements and with predictions based on Regge theory and factorization.Comment: 10 pages, 4 figures, using RevTeX. Submitted to Physical Review Letter

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    The national portfolio for postgraduate family medicine training in South Africa : a descriptive study of acceptability, educational impact, and usefulness for assessment

    Get PDF
    Background: Since 2007 a portfolio of learning has become a requirement for assessment of postgraduate family medicine training by the Colleges of Medicine of South Africa. A uniform portfolio of learning has been developed and content validity established among the eight postgraduate programmes. The aim of this study was to investigate the portfolio's acceptability, educational impact, and perceived usefulness for assessment of competence. Methods: Two structured questionnaires of 35 closed and open-ended questions were delivered to 53 family physician supervisors and 48 registrars who had used the portfolio. Categorical and nominal/ordinal data were analysed using simple descriptive statistics. The open-ended questions were analysed with ATLAS.ti software. Results: Half of registrars did not find the portfolio clear, practical or feasible. Workshops on portfolio use, learning, and supervision were supported, and brief dedicated time daily for reflection and writing. Most supervisors felt the portfolio reflected an accurate picture of learning, but just over half of registrars agreed. While the portfolio helped with reflection on learning, participants were less convinced about how it helped them plan further learning. Supervisors graded most rotations, suggesting understanding the summative aspect, while only 61% of registrars reflected on rotations, suggesting the formative aspects are not yet optimally utilised. Poor feedback, the need for protected academic time, and pressure of service delivery impacting negatively on learning. Conclusion: This first introduction of a national portfolio for postgraduate training in family medicine in South Africa faces challenges similar to those in other countries. Acceptability of the portfolio relates to a clear purpose and guide, flexible format with tools available in the workplace, and appreciating the changing educational environment from university-based to national assessments. The role of the supervisor in direct observations of the registrar and dedicated educational meetings, giving feedback and support, cannot be overemphasized

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM (-/-) patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    Limits on WWZWWZ and WWγWW\gamma couplings from WWWW and WZWZ production in ppp\overline{p} collisions at s=1.8\sqrt{s} = 1.8 TeV

    Full text link
    Direct limits are set on WWZWWZ and WWγWW\gamma three-boson couplings in a search for WWWW and WZWZ production with high transverse momentum in ppp\overline{p} collisions at s=1.8\sqrt{s} = 1.8 TeV, using the Collider Detector at Fermilab. The results are in agreement with the SU(2) ×\times U(1) model of electroweak interactions. Assuming Standard Model WWγWW\gamma coupling, the the limits are interpreted as direct evidence for a non-zero WWZWWZ coupling at subprocess energies near 500 GeV. Alternatively, assumiong identical WWZWWZ and WWγWW\gamma couplings, bounds 0.11<κ<2.27-0.11 < \kappa < 2.27 and 0.81<λ<0.84-0.81 < \lambda < 0.84 are obtained at 95%95\% CL for a form factor scale 1000 GeV.Comment: 16 pages, submitted to PRL, URL: http://www-cdf.fnal.gov/physics/pub95/cdf2951_vvprl.p

    Convergent functional genomics of anxiety disorders: translational identification of genes, biomarkers, pathways and mechanisms

    Get PDF
    Anxiety disorders are prevalent and disabling yet understudied from a genetic standpoint, compared with other major psychiatric disorders such as bipolar disorder and schizophrenia. The fact that they are more common, diverse and perceived as embedded in normal life may explain this relative oversight. In addition, as for other psychiatric disorders, there are technical challenges related to the identification and validation of candidate genes and peripheral biomarkers. Human studies, particularly genetic ones, are susceptible to the issue of being underpowered, because of genetic heterogeneity, the effect of variable environmental exposure on gene expression, and difficulty of accrual of large, well phenotyped cohorts. Animal model gene expression studies, in a genetically homogeneous and experimentally tractable setting, can avoid artifacts and provide sensitivity of detection. Subsequent translational integration of the animal model datasets with human genetic and gene expression datasets can ensure cross-validatory power and specificity for illness. We have used a pharmacogenomic mouse model (involving treatments with an anxiogenic drug—yohimbine, and an anti-anxiety drug—diazepam) as a discovery engine for identification of anxiety candidate genes as well as potential blood biomarkers. Gene expression changes in key brain regions for anxiety (prefrontal cortex, amygdala and hippocampus) and blood were analyzed using a convergent functional genomics (CFG) approach, which integrates our new data with published human and animal model data, as a translational strategy of cross-matching and prioritizing findings. Our work identifies top candidate genes (such as FOS, GABBR1, NR4A2, DRD1, ADORA2A, QKI, RGS2, PTGDS, HSPA1B, DYNLL2, CCKBR and DBP), brain–blood biomarkers (such as FOS, QKI and HSPA1B), pathways (such as cAMP signaling) and mechanisms for anxiety disorders—notably signal transduction and reactivity to environment, with a prominent role for the hippocampus. Overall, this work complements our previous similar work (on bipolar mood disorders and schizophrenia) conducted over the last decade. It concludes our programmatic first pass mapping of the genomic landscape of the triad of major psychiatric disorder domains using CFG, and permitted us to uncover the significant genetic overlap between anxiety and these other major psychiatric disorders, notably the under-appreciated overlap with schizophrenia. PDE10A, TAC1 and other genes uncovered by our work provide a molecular basis for the frequently observed clinical co-morbidity and interdependence between anxiety and other major psychiatric disorders, and suggest schizo-anxiety as a possible new nosological domain

    The Effect of Inappropriate Calibration: Three Case Studies in Molecular Ecology

    Get PDF
    Time-scales estimated from sequence data play an important role in molecular ecology. They can be used to draw correlations between evolutionary and palaeoclimatic events, to measure the tempo of speciation, and to study the demographic history of an endangered species. In all of these studies, it is paramount to have accurate estimates of time-scales and substitution rates. Molecular ecological studies typically focus on intraspecific data that have evolved on genealogical scales, but often these studies inappropriately employ deep fossil calibrations or canonical substitution rates (e.g., 1% per million years for birds and mammals) for calibrating estimates of divergence times. These approaches can yield misleading estimates of molecular time-scales, with significant impacts on subsequent evolutionary and ecological inferences. We illustrate this calibration problem using three case studies: avian speciation in the late Pleistocene, the demographic history of bowhead whales, and the Pleistocene biogeography of brown bears. For each data set, we compare the date estimates that are obtained using internal and external calibration points. In all three cases, the conclusions are significantly altered by the application of revised, internally-calibrated substitution rates. Collectively, the results emphasise the importance of judicious selection of calibrations for analyses of recent evolutionary events
    corecore