48 research outputs found

    First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way

    Get PDF
    We present the first Event Horizon Telescope (EHT) observations of Sagittarius A* (Sgr A*), the Galactic center source associated with a supermassive black hole. These observations were conducted in 2017 using a global interferometric array of eight telescopes operating at a wavelength of λ = 1.3 mm. The EHT data resolve a compact emission region with intrahour variability. A variety of imaging and modeling analyses all support an image that is dominated by a bright, thick ring with a diameter of 51.8 \ub1 2.3 ÎŒas (68% credible interval). The ring has modest azimuthal brightness asymmetry and a comparatively dim interior. Using a large suite of numerical simulations, we demonstrate that the EHT images of Sgr A* are consistent with the expected appearance of a Kerr black hole with mass ∌4 7 106 M☉, which is inferred to exist at this location based on previous infrared observations of individual stellar orbits, as well as maser proper-motion studies. Our model comparisons disfavor scenarios where the black hole is viewed at high inclination (i > 50\ub0), as well as nonspinning black holes and those with retrograde accretion disks. Our results provide direct evidence for the presence of a supermassive black hole at the center of the Milky Way, and for the first time we connect the predictions from dynamical measurements of stellar orbits on scales of 103-105 gravitational radii to event-horizon-scale images and variability. Furthermore, a comparison with the EHT results for the supermassive black hole M87* shows consistency with the predictions of general relativity spanning over three orders of magnitude in central mass

    THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) provides the unprecedented ability to directly resolve the structure and dynamics of black hole emission regions on scales smaller than their horizons. This has the potential to critically probe the mechanisms by which black holes accrete and launch outflows, and the structure of supermassive black hole spacetimes. However, accessing this information is a formidable analysis challenge for two reasons. First, the EHT natively produces a variety of data types that encode information about the image structure in nontrivial ways; these are subject to a variety of systematic effects associated with very long baseline interferometry and are supplemented by a wide variety of auxiliary data on the primary EHT targets from decades of other observations. Second, models of the emission regions and their interaction with the black hole are complex, highly uncertain, and computationally expensive to construct. As a result, the scientific utilization of EHT observations requires a flexible, extensible, and powerful analysis framework. We present such a framework, Themis, which defines a set of interfaces between models, data, and sampling algorithms that facilitates future development. We describe the design and currently existing components of Themis, how Themis has been validated thus far, and present additional analyses made possible by Themis that illustrate its capabilities. Importantly, we demonstrate that Themis is able to reproduce prior EHT analyses, extend these, and do so in a computationally efficient manner that can efficiently exploit modern high-performance computing facilities. Themis has already been used extensively in the scientific analysis and interpretation of the first EHT observations of M87

    SYMBA: An end-to-end VLBI synthetic data generation pipeline: Simulating Event Horizon Telescope observations of M 87

    Get PDF
    Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays (SYMBA), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images

    A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows

    Get PDF
    We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    First M87 Event Horizon Telescope Results. I. the Shadow of the Supermassive Black Hole

    Get PDF
    When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 \ub13 ÎŒas, which is circular and encompasses a central depression in brightness with a flux ratio ≈10:1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M =(6.5 \ub10.7) 710 9 M o . Our radio-wave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible

    Population Status of Major U.S. Swine Breeds

    Get PDF
    Globally, genetic diversity of livestock populations is contracting. Knowing the true extent of the contraction is needed to develop effective conservation strategies. To accomplish this goal, pedigree records were obtained for: Duroc (n = 878,480), Hampshire (n = 744,270), Landrace (n = 126,566), and Yorkshire (n = 727,268) from NSR, and Berkshire (n = 116,758 American Berkshire Association). Number of registrations peaked in 1990 for all breeds except Berkshire and all have been declining in the current decade. Presently, more than 99% of all pigs are inbred with the majority having inbreeding less than 10%. The range for percent of animals that are more than 25% inbred ranged from 1.16% for Yorkshire to 6.09% for Berkshire. The highest inbreeding for all animals within a breed ranged from 51% for Landrace and 65% for Yorkshire. Sires were grouped into ten percentiles based on number of great-grandprogeny (GGP); the top percentile for all breeds accounted for more than 75% of all GGP. Sixty percent of all sires produced less than 1% of all GGP, indicating few males are responsible for the majority of future generations, thus narrowing the genetic base. Generation numbers were computed with the founders defined as having unknown parents, assigned as generation zero. Generations ranged from 17 to 19 per breed with a generation interval ranging from 1.65 yr for Berkshire to 2.21 yr for Yorkshire. Mean inbreeding (%) at generation 17, inbreeding rate of increase per generation, and effective population size were 12.3, 0.0065, and 77 for Berkshire, 11.8, 0.0044, and 113 for Duroc, 6.8, 0.0046, and 109 for Hampshire, 17.9, 0.0067, and 74 for Landrace, and 8.0, 0.0044, and 113 for Yorkshire, respectively. The two breeds with fewest registrations, Berkshire and Landrace, have a higher inbreeding rate and lower effective population sizes; these breeds need more aggressive conservation in order to maintain genetic diversity. This analysis provides a basis for future monitoring of the genetic diversity of pig breeds

    Performance of Somali Blackhead sheep and Galla goats in northern Kenya

    No full text

    A gene bank's collection of genetic diversity among minor chicken breeds1

    No full text
    ABSTRACT: Genetic differences among heritage or fancier breeds of chickens have not been quantified in the United States. Gene banks collecting germplasm for conserving these breeds need this information as do breeders and companies raising them. Our goal was to evaluate genetic diversity of 10 heritage/fancier chicken breeds that are a component of the national collection and to use this information to establish a baseline of their genetic diversity and future conservation efforts. Breeds could be broadly classified as European, Asian, Mediterranean, and United States (US) in origin. The US breeds were composite breeds developed between the 1849 and 1935. Animals (n = 24–31 per breed) were sampled for DNA analysis from 2 or 3 hatcheries per breed and a total of 8 hatcheries. The hatcheries were assumed to maintain and breed their own populations of the studied breeds. Effective population sizes ranged from 47 to 145 and used to estimate probabilities of extinction for a 50-generation timeline. It was determined that Crevecoeur and Aseel had a probability of extinction that exceeded 40%, the remaining 8 breeds had probabilities of <28%. ADMIXTURE analysis indicated the minimal CV corresponded to 9 populations. In that analysis New Hampshire and Rhode Island Red were classified as the same population, which was not unusual given that New Hampshire was developed as a subpopulation of Rhode Island Red. Crevecoeur and Buttercup were the 2 most genetically divergent breeds based on pairwise Fst among the breeds and principal component analysis, which was supported by the ADMIXTURE results. Inbreeding coefficients computed from genomic information was lowest for Crevecoeur, Rhode Island Red, Buttercup, and Andalusian (0.8–2.6%), while New Hampshire, Buckeye, and Aseel were highest (12.8–14.3%). Within breed Fst among hatcheries supplying animals for sampling generally indicated a genetic structure was present on a breed-by-breed basis. Genetic relationships within hatchery were also computed for each breed. Several of the hatcheries had sent samples that suggested genetic relationships as high as half-sibs while several others had genetic relationships closer to first cousins. We conclude that the chicken breeds evaluated have substantial genetic variability within the in situ populations and the gene bank has captured this diversity for future use
    corecore