314 research outputs found
Unitary representations of the Galilean line group: Quantum mechanical principle of equivalence
We present a formalism of Galilean quantum mechanics in non-inertial
reference frames and discuss its implications for the equivalence principle.
This extension of quantum mechanics rests on the Galilean line group, the
semidirect product of the real line and the group of analytic functions from
the real line to the Euclidean group in three dimensions. This group provides
transformations between all inertial and non-inertial reference frames and
contains the Galilei group as a subgroup. We construct a certain class of
unitary representations of the Galilean line group and show that these
representations determine the structure of quantum mechanics in non-inertial
reference frames. Our representations of the Galilean line group contain the
usual unitary projective representations of the Galilei group, but have a more
intricate cocycle structure. The transformation formula for the Hamiltonian
under the Galilean line group shows that in a non-inertial reference frame it
acquires a fictitious potential energy term that is proportional to the
inertial mass, suggesting the equivalence of inertial mass and gravitational
mass in quantum mechanics
Spectral action for torsion with and without boundaries
We derive a commutative spectral triple and study the spectral action for a
rather general geometric setting which includes the (skew-symmetric) torsion
and the chiral bag conditions on the boundary. The spectral action splits into
bulk and boundary parts. In the bulk, we clarify certain issues of the previous
calculations, show that many terms in fact cancel out, and demonstrate that
this cancellation is a result of the chiral symmetry of spectral action. On the
boundary, we calculate several leading terms in the expansion of spectral
action in four dimensions for vanishing chiral parameter of the
boundary conditions, and show that is a critical point of the action
in any dimension and at all orders of the expansion.Comment: 16 pages, references adde
Metal enrichment processes
There are many processes that can transport gas from the galaxies to their
environment and enrich the environment in this way with metals. These metal
enrichment processes have a large influence on the evolution of both the
galaxies and their environment. Various processes can contribute to the gas
transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy
interactions and others. We review their observational evidence, corresponding
simulations, their efficiencies, and their time scales as far as they are known
to date. It seems that all processes can contribute to the enrichment. There is
not a single process that always dominates the enrichment, because the
efficiencies of the processes vary strongly with galaxy and environmental
properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 17; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Ein systemischer Ansatz zum Altern im Arbeitskontext
In this article we present the interdisciplinary, developmental and systemic approach to the study of work and aging that guides research at the Jacobs Center on Lifelong Learning and Institutional Development (JCLL). We introduce basic principles of adult development including its plasticity, multi-directionality, and embeddedness in contexts. We describe the different dynamic internal (e.g., psychological, physiological) and external contexts (e.g., organizations, labor market institutions) relevant to the work context that influence adult development. We present how the various disciplinary perspectives at the JCLL contribute to a fuller understanding of various contextual systems and their interactions with regard to the work context. Finally, we describe how a systemic approach to research on work and aging can contribute to the creation of work contexts conducive to productive development across the adult lifespan as summarized in the notion of dynamic human resource management. Importantly, we consider a wider notion of 'productivity' that encompasses not only economic aspects but also intellectual, motivational and emotional outputs
Observation of Orbitally Excited B_s Mesons
We report the first observation of two narrow resonances consistent with
states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar
collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the
Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed
as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+,
\bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1})
= 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
Measurement of the ttbar Production Cross Section in ppbar collisions at sqrt s = 1.96 TeV in the All Hadronic Decay Mode
We report a measurement of the ttbar production cross section using the
CDF-II detector at the Fermilab Tevatron. The analysis is performed using 311
pb-1 of ppbar collisions at sqrt(s)=1.96 TeV. The data consist of events
selected with six or more hadronic jets with additional kinematic requirements.
At least one of these jets must be identified as a b-quark jet by the
reconstruction of a secondary vertex. The cross section is measured to be
sigma(tbart)=7.5+-2.1(stat.)+3.3-2.2(syst.)+0.5-0.4(lumi.) pb, which is
consistent with the standard model prediction.Comment: By CDF collaboratio
Search for chargino-neutralino production in ppbar collisions at sqrt(s) = 1.96 TeV
We present the results of a search for associated production of the chargino
and neutralino supersymmetric particles using up to 1.1 fb-1 of integrated
luminosity collected by the CDF II experiment at the Tevatron ppbar collider at
a center-of-mass energy of 1.96 TeV. The search is conducted by analyzing
events with a large transverse momentum imbalance and either three charged
leptons or two charged leptons of the same electric charge. The numbers of
observed events are found to be consistent with standard model expectations.
Upper limits on the production cross section are derived in different
theoretical models. In one of these models a lower limit on the mass of the
chargino is set at 129 GeV/c^2 at the 95% confidence level.Comment: To be submitted to Phys.Rev.Let
Measurement of the W+W- Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Dilepton Events
We present a measurement of the W+W- production cross section using 184/pb of
ppbar collisions at a center-of-mass energy of 1.96 TeV collected with the
Collider Detector at Fermilab. Using the dilepton decay channel W+W- ->
l+l-vvbar, where the charged leptons can be either electrons or muons, we find
17 candidate events compared to an expected background of 5.0+2.2-0.8 events.
The resulting W+W- production cross section measurement of sigma(ppbar -> W+W-)
= 14.6 +5.8 -5.1 (stat) +1.8 -3.0 (syst) +-0.9 (lum) pb agrees well with the
Standard Model expectation.Comment: 8 pages, 2 figures, 2 tables. To be submitted to Physical Review
Letter
Measurement of the cross section of high transverse momentum ZâbbÌ production in protonâproton collisions at âs = 8 TeV with the ATLAS detector
This Letter reports the observation of a high transverse momentum ZâbbÌ signal in protonâproton collisions at âs=8 TeV and the measurement of its production cross section. The data analysed were collected in 2012 with the ATLAS detector at the LHC and correspond to an integrated luminosity of 19.5 fbâÂč. The ZâbbÌ decay is reconstructed from a pair of b -tagged jets, clustered with the anti-ktkt jet algorithm with R=0.4R=0.4, that have low angular separation and form a dijet with pT>200 GeVpT>200 GeV. The signal yield is extracted from a fit to the dijet invariant mass distribution, with the dominant, multi-jet background mass shape estimated by employing a fully data-driven technique that reduces the dependence of the analysis on simulation. The fiducial cross section is determined to be
ÏZâbbÂŻfid=2.02±0.20 (stat.) ±0.25 (syst.)±0.06 (lumi.) pb=2.02±0.33 pb,
in good agreement with next-to-leading-order theoretical predictions
- âŠ