170 research outputs found

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→Ό+ÎŒ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→Ό+ÎŒ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat Ă  l’Energie Atomique and Institut National de Physique NuclĂ©aire et de Physiquedes Particules (France), the Bundesministerium fĂŒr Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e InnovaciĂłn (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    Measurements of long-range near-side angular correlations in sNN=5\sqrt{s_{\text{NN}}}=5TeV proton-lead collisions in the forward region

    Get PDF
    Two-particle angular correlations are studied in proton-lead collisions at a nucleon-nucleon centre-of-mass energy of sNN=5\sqrt{s_{\text{NN}}}=5TeV, collected with the LHCb detector at the LHC. The analysis is based on data recorded in two beam configurations, in which either the direction of the proton or that of the lead ion is analysed. The correlations are measured in the laboratory system as a function of relative pseudorapidity, Δη\Delta\eta, and relative azimuthal angle, Δϕ\Delta\phi, for events in different classes of event activity and for different bins of particle transverse momentum. In high-activity events a long-range correlation on the near side, Δϕ≈0\Delta\phi \approx 0, is observed in the pseudorapidity range 2.0<η<4.92.0<\eta<4.9. This measurement of long-range correlations on the near side in proton-lead collisions extends previous observations into the forward region up to η=4.9\eta=4.9. The correlation increases with growing event activity and is found to be more pronounced in the direction of the lead beam. However, the correlation in the direction of the lead and proton beams are found to be compatible when comparing events with similar absolute activity in the direction analysed.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-040.htm

    Study of the production of Λb0\Lambda_b^0 and B‟0\overline{B}^0 hadrons in pppp collisions and first measurement of the Λb0→J/ψpK−\Lambda_b^0\rightarrow J/\psi pK^- branching fraction

    Get PDF
    The product of the Λb0\Lambda_b^0 (B‟0\overline{B}^0) differential production cross-section and the branching fraction of the decay Λb0→J/ψpK−\Lambda_b^0\rightarrow J/\psi pK^- (B‟0→J/ψK‟∗(892)0\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0) is measured as a function of the beauty hadron transverse momentum, pTp_{\rm T}, and rapidity, yy. The kinematic region of the measurements is pT<20 GeV/cp_{\rm T}<20~{\rm GeV}/c and 2.0<y<4.52.0<y<4.5. The measurements use a data sample corresponding to an integrated luminosity of 3 fb−13~{\rm fb}^{-1} collected by the LHCb detector in pppp collisions at centre-of-mass energies s=7 TeV\sqrt{s}=7~{\rm TeV} in 2011 and s=8 TeV\sqrt{s}=8~{\rm TeV} in 2012. Based on previous LHCb results of the fragmentation fraction ratio, fΛB0/fdf_{\Lambda_B^0}/f_d, the branching fraction of the decay Λb0→J/ψpK−\Lambda_b^0\rightarrow J/\psi pK^- is measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4}, \end{equation*} where the first uncertainty is statistical, the second is systematic, the third is due to the uncertainty on the branching fraction of the decay B‟0→J/ψK‟∗(892)0\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0, and the fourth is due to the knowledge of fΛb0/fdf_{\Lambda_b^0}/f_d. The sum of the asymmetries in the production and decay between Λb0\Lambda_b^0 and Λ‟b0\overline{\Lambda}_b^0 is also measured as a function of pTp_{\rm T} and yy. The previously published branching fraction of Λb0→J/ψpπ−\Lambda_b^0\rightarrow J/\psi p\pi^-, relative to that of Λb0→J/ψpK−\Lambda_b^0\rightarrow J/\psi pK^-, is updated. The branching fractions of Λb0→Pc+(→J/ψp)K−\Lambda_b^0\rightarrow P_c^+(\rightarrow J/\psi p)K^- are determined.Comment: 29 pages, 19figures. All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-032.htm

    Evidence for the strangeness-changing weak decay Ξb−→Λb0π−\Xi_b^-\to\Lambda_b^0\pi^-

    Get PDF
    Using a pppp collision data sample corresponding to an integrated luminosity of 3.0~fb−1^{-1}, collected by the LHCb detector, we present the first search for the strangeness-changing weak decay Ξb−→Λb0π−\Xi_b^-\to\Lambda_b^0\pi^-. No bb hadron decay of this type has been seen before. A signal for this decay, corresponding to a significance of 3.2 standard deviations, is reported. The relative rate is measured to be fΞb−fΛb0B(Ξb−→Λb0π−)=(5.7±1.8−0.9+0.8)×10−4{{f_{\Xi_b^-}}\over{f_{\Lambda_b^0}}}{\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) = (5.7\pm1.8^{+0.8}_{-0.9})\times10^{-4}, where fΞb−f_{\Xi_b^-} and fΛb0f_{\Lambda_b^0} are the b→Ξb−b\to\Xi_b^- and b→Λb0b\to\Lambda_b^0 fragmentation fractions, and B(Ξb−→Λb0π−){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) is the branching fraction. Assuming fΞb−/fΛb0f_{\Xi_b^-}/f_{\Lambda_b^0} is bounded between 0.1 and 0.3, the branching fraction B(Ξb−→Λb0π−){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) would lie in the range from (0.57±0.21)%(0.57\pm0.21)\% to (0.19±0.07)%(0.19\pm0.07)\%.Comment: 7 pages, 2 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm

    BB flavour tagging using charm decays at the LHCb experiment

    Get PDF
    An algorithm is described for tagging the flavour content at production of neutral BB mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a BB meson with the charge of a reconstructed secondary charm hadron from the decay of the other bb hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes B+→J/ψ K+B^+ \to J/\psi \, K^+ and B0→J/ψ K∗0B^0 \to J/\psi \, K^{*0} using 3.0 fb−13.0\mathrm{\,fb}^{-1} of data collected by the LHCb experiment at pppp centre-of-mass energies of 7 TeV7\mathrm{\,TeV} and 8 TeV8\mathrm{\,TeV}. Its tagging power on these samples of B→J/ψ XB \to J/\psi \, X decays is (0.30±0.01±0.01)%(0.30 \pm 0.01 \pm 0.01) \%.Comment: All figures and tables, along with any supplementary material and additional information, are available at http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm

    Observation of the baryonic decay B \uaf 0 \u2192 \u39bc+ p \uaf K-K+

    Get PDF
    We report the observation of the baryonic decay B\uaf0\u2192\u39bc+p\uafK-K+ using a data sample of 471 7106 BB\uaf pairs produced in e+e- annihilations at s=10.58GeV. This data sample was recorded with the BABAR detector at the PEP-II storage ring at SLAC. We find B(B\uaf0\u2192\u39bc+p\uafK-K+)=(2.5\ub10.4(stat)\ub10.2(syst)\ub10.6B(\u39bc+)) 710-5, where the uncertainties are statistical, systematic, and due to the uncertainty of the \u39bc+\u2192pK-\u3c0+ branching fraction, respectively. The result has a significance corresponding to 5.0 standard deviations, including all uncertainties. For the resonant decay B\uaf0\u2192\u39bc+p\uaf\u3c6, we determine the upper limit B(B\uaf0\u2192\u39bc+p\uaf\u3c6)<1.2 710-5 at 90% confidence level

    Study of B^{+-} -> K^{+-}(K_S K pi)^0 Decay and Determination of eta_c and eta_c(2S) Parameters

    Get PDF
    We report the results of a study of B±→K±ηcB^{\pm}\to K^{\pm}\eta_c and B±→K±ηc(2S)B^{\pm}\to K^{\pm}\eta_c(2S) decays followed by ηc\eta_c and ηc(2S)\eta_c(2S) decays to (KSKπ)0(K_SK\pi)^0. The results are obtained from a data sample containing 535 million BBˉB\bar{B}-meson pairs collected by the Belle experiment at the KEKB e+e−e^+e^- collider. We measure the products of the branching fractions B(B±→K±ηc)B(ηc→KSK±π∓)=(26.7±1.4(stat)−2.6+2.9(syst)±4.9(model))×10−6{\mathcal B}(B^{\pm}\to K^{\pm}\eta_c){\mathcal B}(\eta_c\to K_S K^{\pm}\pi^{\mp})=(26.7\pm 1.4(stat)^{+2.9}_{-2.6}(syst)\pm 4.9(model))\times 10^{-6} and B(B±→K±ηc(2S))B(ηc(2S)→KSK±π∓)=(3.4−1.5+2.2(stat+model)−0.4+0.5syst))×10−6{\mathcal B}(B^{\pm}\to K^{\pm}\eta_c(2S)){\mathcal B}(\eta_c(2S)\to K_S K^{\pm}\pi^{\mp})=(3.4^{+2.2}_{-1.5}(stat+model)^{+0.5}_{-0.4} syst))\times 10^{-6}. Interference with the non-resonant component leads to significant model uncertainty in the measurement of these product branching fractions. Our analysis accounts for this interference and allows the model uncertainty to be reduced. We also obtain the following charmonia masses and widths: M(ηc)=(2985.4±1.5(stat)−2.0+0.5(syst))M(\eta_c)=(2985.4\pm 1.5(stat)^{+0.5}_{-2.0}(syst)) MeV/c2c^2, Γ(ηc)=(35.1±3.1(stat)−1.6+1.0(syst))\Gamma(\eta_c)=(35.1\pm 3.1(stat)^{+1.0}_{-1.6}(syst)) MeV/c2c^2, M(ηc(2S))=(3636.1−4.2+3.9(stat+model)−2.0+0.7(syst))M(\eta_c(2S))=(3636.1^{+3.9}_{-4.2}(stat+model)^{+0.7}_{-2.0}(syst)) MeV/c2c^2, Γ(ηc(2S))=(6.6−5.1+8.4(stat+model)−0.9+2.6(syst))\Gamma(\eta_c(2S))=(6.6^{+8.4}_{-5.1}(stat+model)^{+2.6}_{-0.9}(syst)) MeV/c2c^2.Comment: 23 pages, 10 figures, submitted to PL

    Search for Darkonium in e+e- Collisions

    Get PDF
    Collider searches for dark sectors, new particles interacting only feebly with ordinary matter, have largely focused on identifying signatures of new mediators, leaving much of dark sector structures unexplored. In particular, the existence of dark matter bound states (darkonia) remains to be investigated. This possibility could arise in a simple model in which a dark photon (A0 ) is light enough to generate an attractive force between dark fermions. We report herein a search for a JPC ÂŒ 1−− darkonium state, the ϒD, produced in the reaction eĂŸe− → ÎłÏ’D, ϒD → A0 A0 A0 , where the dark photons subsequently decay into pairs of leptons or pions, using 514 fb−1 of data collected with the BABAR detector. No significant signal is observed, and we set bounds on the Îł − A0 kinetic mixing as a function of the dark sector coupling constant for 0.001 < mA0 < 3.16 GeV and 0.05 < mϒD < 9.5 GeV.publishedVersio

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio
    • 

    corecore