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We report the results of a study of B± → K ±ηc and B± → K ±ηc(2S) decays followed by ηc and ηc(2S)

decays to (K S Kπ)0. The results are obtained from a data sample containing 535 million B B̄-meson
pairs collected by the Belle experiment at the KEKB e+e− collider. We measure the products of the
branching fractions B(B± → K ±ηc)B(ηc → K S K ±π∓) = (26.7 ± 1.4(stat)+2.9

−2.6(syst) ± 4.9(model)) × 10−6

and B(B± → K ±ηc(2S))B(ηc(2S) → K S K ±π∓) = (3.4+2.2
−1.5(stat + model)+0.5

−0.4(syst)) × 10−6. Interference
with the non-resonant component leads to significant model uncertainty in the measurement of these
product branching fractions. Our analysis accounts for this interference and allows the model uncertainty
to be reduced. We also obtain the following charmonia masses and widths: M(ηc) = (2985.4 ±
1.5(stat)+0.5

−2.0(syst)) MeV/c2, Γ (ηc) = (35.1 ± 3.1(stat)+1.0
−1.6(syst)) MeV/c2, M(ηc(2S)) = (3636.1+3.9

−4.2(stat +
model)+0.7

−2.0(syst)) MeV/c2, Γ (ηc(2S)) = (6.6+8.4
−5.1(stat + model)+2.6

−0.9(syst)) MeV/c2.
© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

Charmonium states consist of a heavy charm-anticharm quark
pair, which allows the prediction of some of the parameters
of these states using non-relativistic and relativistic potential
models [1], lattice QCD [2], non-relativistic effective field theory
(NRQCD) [3], and sum rules [4] (see the recent review in [5]). The
comparison of these predictions with experimental results pro-
vides an opportunity to tune the parameters of theoretical models
and, therefore, improve the accuracy of other values predicted
by these models. We have to measure the charmonium masses,
widths, and product branching fractions with enough accuracy
to compare them with theoretical predictions. Parameters of (cc̄)
states such as the ηc and ηc(2S) mesons have been studied in var-
ious experiments using a variety of decay channels [6]. Tables 1
and 2, which list a selection of most precise mass and width
determinations, show that there is quite a large spread of mea-
sured masses and widths of the ηc and, especially, ηc(2S) mesons
resulting in large scale factors for the world average values [6].
Moreover, our knowledge of hadronic decays of these charmonia is
rather poor.

In the Belle and BaBar B factory experiments, charmonia are
produced in various ways: from fragmentation in electron–positron
annihilation, from two-photon processes, and in B decays. The ad-
vantages of B± → K ±cc̄ decay are the relatively large reconstruc-
tion efficiency, small background, and the fixed quantum numbers
( J P = 0−) of the initial state. Here we consider the following de-
cays of charged B mesons:

B± → K ±ηc → K ±(K S Kπ)0,

B± → K ±ηc(2S) → K ±(K S Kπ)0.

A 492 fb−1 data sample provides an opportunity to determine
the corresponding products of the branching fractions as well as
masses and widths of the ηc and ηc(2S) mesons.

At all stages of this analysis we consistently take into account
the interference between the B± → K ±ηc and B± → K ±ηc(2S)

decays and the decay B± → K ±(K S Kπ)0, which has the same final
state but no intermediate charmonium particle.

2. Event selection

The results are based on a data sample that contains 535 ×
106 B B̄ pairs, collected with the Belle detector at the KEKB
asymmetric-energy e+e− collider [18] operating at the Υ (4S) res-
onance.

The Belle detector [19] is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD), a 50-layer

http://creativecommons.org/licenses/by/3.0/
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Table 1
Previously measured ηc parameters.

Experiment Process Mass, MeV/c2 Width, MeV/c2

BaBar [7] γ γ → ηc → K 0
S K ±π∓ 2982.2 ± 0.4 ± 1.6 31.7 ± 1.2 ± 0.8

Belle [8] γ γ → ηc → K S K ±π∓ 2981.4 ± 0.5 ± 0.4 36.6 ± 1.5 ± 2.0
BaBar [9] B → ηc K (∗) → K K̄π K (∗) 2985.8 ± 1.5 ± 3.1 36.3+3.7

−3.6 ± 4.4
Belle [10] γ γ → ηc → hadrons 2986.1 ± 1.0 ± 2.5 28.1 ± 3.2 ± 2.2
CLEO [11] γ γ → ηc → K 0

S K ±π∓ 2981.8 ± 1.3 ± 1.5 24.8 ± 3.4 ± 3.5
BES [12] J/ψ → γ ηc 2977.5 ± 1.0 ± 1.2 17.0 ± 3.7 ± 7.4
E835 [13] pp̄ → γ γ 2984.1 ± 2.1 ± 1.0 20.4+7.7

−6.7 ± 2.0

Table 2
Previously measured ηc(2S) parameters.

Experiment Process Mass, MeV/c2 Width, MeV/c2

Belle [8] γ γ → ηc(2S) → K S K ±π∓ 3633.7 ± 2.3 ± 1.9 19.1 ± 6.9 ± 6.0
Belle [14] e+e− → J/ψcc̄ 3626 ± 5 ± 6 –
BaBar [15] e+e− → J/ψcc̄ 3645.0 ± 5.5+4.9

−7.8 22 ± 14
CLEO [11] γ γ → ηc(2S) → K 0

S K ±π∓ 3642.9 ± 3.1 ± 1.5 6.3 ± 12.4 ± 4.0
BaBar [16] γ γ → ηc(2S) → K K̄π 3630.8 ± 3.4 ± 1.0 17.0 ± 8.3 ± 2.5
Belle [17] B → K K S K ±π∓ 3654 ± 6 ± 8 < 55
central drift chamber (CDC) for charged particle tracking and spe-
cific ionization measurement (dE/dx), an array of aerogel thresh-
old Cherenkov counters (ACC), time-of-flight scintillation counters
(TOF), and an array of 8736 CsI(Tl) crystals for electromagnetic
calorimetry (ECL) located inside a superconducting solenoid coil
that provides a 1.5 T magnetic field. An iron flux return located
outside the coil is instrumented to detect K 0

L mesons and identify
muons (KLM). We use a GEANT-based Monte Carlo (MC) simulation
to model the response of the detector and determine its accep-
tance [20].

Pions and kaons are separated by combining the responses of
the ACC and the TOF with dE/dx measurements in the CDC to
form a likelihood L(h) where h = π or K . Charged particles are
identified as pions or kaons using the likelihood ratio R:

R(K ) = L(K )

L(K ) + L(π)
; R(π) = L(π)

L(K ) + L(π)
= 1 − R(K ).

Charged tracks are selected with requirements based on the χ2

of the track fits and the impact parameters relative to the interac-
tion point. We require that the polar angle of each track be in the
angular range 18◦–152◦ and that the track momentum perpendic-
ular to the positron beamline be greater than 100 MeV/c.

Charged kaon candidates are identified by the requirement
R(K ) > 0.6, which has an efficiency of 90% and a pion misidentifi-
cation probability of 3–10% depending on momentum. For pion
candidates we require R(π) > 0.2. K S candidates are recon-
structed via the π+π− mode. We apply the following cut on the
π+π− invariant mass: 0.489 GeV/c2 < M(π+π−) < 0.505 GeV/c2.
The flight length of the K S is required to lie within the inter-
val [0.1 : 20] mm. The condition on the K S direction angle ϕ is
cos(ϕ) > 0.95.

B meson candidates are identified by their center-of-mass
(c.m.) energy difference 
E = (

∑
i Ei) − Eb, and the beam-

constrained mass Mbc =
√

E2
b − (

∑
i �pi)

2, where Eb = √
s/2 is

the beam energy in the Υ (4S) c.m. frame, and �pi and Ei are
the c.m. three-momenta and energies, respectively, of the B me-
son candidate decay products. The signal region is defined as:
|
E| < 0.03 GeV, 5.273 GeV/c2 < Mbc < 5.285 GeV/c2. The 
E
sideband region is defined as ||
E| − 0.06 (GeV)| < 0.03 GeV.

To suppress the large continuum background (e+e− → qq̄,
where q = u,d, s, c), topological variables are used. Since the pro-
duced B mesons are nearly at rest in the c.m. frame, the signal
tends to be isotropic while continuum qq̄ background tends to
have a two-jet structure. We use the angle between the thrust axis
of the B candidate and that of the rest of the event (Θthrust) to dis-
criminate between these two cases. The distribution of | cosΘthrust|
is strongly peaked near | cosΘthrust| = 1 for qq̄ events and is nearly
uniform for Υ (4S) → B B̄ events. We require | cosΘthrust| < 0.8.

If there is more than one combination that satisfies the se-
lection criteria, we select the B candidate with the minimum
difference |M(K S) − M(π+π−)| and the minimum difference be-
tween the vertex z-coordinates of the kaon and pion from the
charmonium decay, and the kaon from the B decay. If the final
state includes two kaons of the same charge, as in K ±(K ±K Sπ

∓),
we must choose the one from the charmonium decay. For this
purpose we select the candidate with the minimum difference
|M(ηc/ηc(2S))− M(K S K ±π∓)|. The mean number of multiple can-
didates per event is 1.6.

3. Interference study

The data sample can contain signal, which has the same fi-
nal state as a resonant decay but does not include a charmonium
resonance. The contribution of these events is referred to as the
non-resonant amplitude. Since the final state is the same, this am-
plitude interferes with the signal. However, if the final particles
form narrow resonances such as D , D S , and φ mesons, the in-
terference effect cancels after integration over mass. Thus, we can
reject some background channels by applying appropriate cuts on
the mass combinations of the final state particles. If the interme-
diate resonances have a substantial width or the B meson decays
directly into the final state particles, the effect of interference must
be taken into account.

The non-resonant contribution can be seen as a peak in the

E distribution in the charmonium sideband regions shown in
Figs. 1 and 2 (plots on the right).1 We fit the 
E distributions
with the sum of a Gaussian distribution and a second-order poly-
nomial function. From these fits we obtain the number of events in
the signal region Nobs and in the sideband region Nsb , which can
be rescaled to obtain the number of non-resonant events Nnon-res.
In the ηc case Nobs = 889±37(stat) and Nnon-res = 87±11(stat). In
the ηc(2S) case Nobs = 279±29(stat) and Nnon-res = 156±13(stat).

1 The ηc meson mass signal region is (2.92–3.04) GeV/c2, the sideband is
(2.54–2.86) GeV/c2 and (3.14–3.46) GeV/c2. The ηc(2S) meson mass signal region
is (3.58–3.7) GeV/c2, the sideband is (3.14–3.46) GeV/c2 and (3.72–4) GeV/c2.
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Fig. 1. 
E distributions in the signal (left) and sideband (right) regions for B± → K ±ηc → K ±(K S Kπ)0 candidates.

Fig. 2. 
E distributions in the signal (left) and sideband (right) regions for B± → K ±ηc(2S) → K ±(K S Kπ)0 candidates.
Fig. 3. The decay B± → K ±ηc → K ±(K S Kπ)0.

Different values of the interference phase can give significant
variations in the number of signal events while the total num-
ber of observed events remains the same. Using the hypotheses of
maximal constructive and destructive interference, we would ob-
tain 410 and 1550 signal events, respectively. Therefore, the model
uncertainty in the number of ηc signal events is rather large:
Nsignal = 980 ± 570(model). It would be even larger for the ηc(2S)

decay. A dedicated study of the interference effect allows this un-
certainty to be reduced.

In the B → K(1)K S K(2)π decay (see Fig. 3) there are four par-
ticles in the final state, which gives 4 × 3 measured parameters.
Taking into account the four constraints of energy-momentum
conservation and integrating over the three angles that charac-
terize the B decay (it is a pseudoscalar and there should be
no dependence on these angles), we have 5 independent vari-
ables to describe the amplitude of the process. We chose the
following parameters: K S K(2)π invariant mass, two Dalitz vari-
ables for the ηc (or ηc(2S)) decay – q2

1 and q2
2 (for example,

M(K(2)π)2 and M(K Sπ)2), the angle between the K S and K(1)

in the rest frame of the K(2)K Sπ system (θ ), and the angle be-
Fig. 4. The signal distribution of (K S K ±π∓) invariant mass in the B± →
K ±(K S Kπ)0 decay. The charmonium states ηc , J/ψ , χc1, and ηc(2S) (in order of
mass) can be seen. The solid histogram is the combinatorial background determined
from the 
E sideband region.

tween the planes of the K(1) − π and K(1) − K S in the same
system (φ).

The M(K S Kπ) distribution has four peaks corresponding to
ηc , J/ψ , χc1 and ηc(2S) production (see Fig. 4). In addition to
these peaks, there is a non-resonant signal, which interferes with
the ηc (or ηc(2S)) signal.2 Unfortunately, the shape of the one-
dimensional (1-D) mass distribution alone does not allow the in-

2 We assume that the non-resonant component is described by a smooth func-
tion.
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Fig. 5. The Dalitz distributions in the ηc (left) and ηc(2S) (right) signal regions.

Fig. 6. Approximation of the cos θ distribution in the ηc signal region by an S-wave (left) and in the sideband region by a sum of S-, P-, and D-waves (right). The combinatorial
background is subtracted.

Fig. 7. Approximation of the cos θ distribution in the ηc(2S) signal region by an S-wave (left) and in the sideband region by a sum of S-, P-, and D-waves (right). The
combinatorial background is subtracted.
terference contribution to be obtained, so other variables should
be used.

The Dalitz plots of 3-body ηc and ηc(2S) decays are shown
in Fig. 5. In the ηc case the distribution is not uniform and has
a peaking structure around a Kπ mass of 1.4 GeV/c2, which can
be a combination of the K ∗(1410), K ∗

0 (1430), and K ∗
2 (1430) states.

However, the statistics are rather low, so it is impossible to deter-
mine with acceptable accuracy either the mass and width of these
states, or the product branching fractions of ηc decay modes in-
volving these states. The small number of events does not allow
the Dalitz analysis to be efficiently performed and makes it dif-
ficult to use the Dalitz plot variables to distinguish the ηc signal
and non-resonant amplitudes. The same conclusion holds for the
ηc(2S) decay.

Another variable that can be used for the amplitude separation
is cos θ . Since the ηc and ηc(2S) are pseudoscalars ( J P = 0−), we
expect a uniform distribution in cos θ . In Figs. 6 and 7 the cos θ

distributions are shown for the ηc and ηc(2S) signal and side-
band regions, while the combinatorial background is subtracted.
One can see that the sideband distribution has contributions from
higher angular waves. A good fit can be obtained with the sum of
S-, P-, and D-waves. The signal region also contains non-resonant
background but mostly consists of signal events, so the S-wave
contribution here is dominant. Separation of the P- and D-waves
from the S-wave in the non-resonant background allows the un-
certainty from interference to be reduced.

Thus, we analyze a 2-D M(K K Sπ)–cos θ histogram assuming
that the non-resonant signal amplitude is constant within the
(2.5–3.46) and (3.14–4.06) GeV/c2 mass ranges. The number of
events in a single bin is Nbin = N
E signal − k · N
E sideband , where
the coefficient k is used to normalize the number of events in
the 
E sideband region. We minimize the likelihood function, as-
suming that the events in the signal and sideband regions are
described by the Poisson statistics. In the ηc analysis the bin size
along the cos θ axis is 0.2 (9 bins), while along the M(K S Kπ) axis
it is 10 MeV/c2 in the signal region and 150/130 MeV/c2 in the
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left/right sideband region (44 bins). For the ηc(2S) the bin size
along the cos θ axis is also 0.2 (9 bins), while along the M(K S Kπ)

axis it is 16 MeV/c2 in the signal region and 130 MeV/c2 in the
sideband region (29 bins).

We exclude the J/ψ region (3.07–3.13 GeV/c2) from the fit be-
cause the interference of the J/ψ and non-resonant signal is neg-
ligible due to the small width of the former and inclusion of this
region does not constrain the ηc interference contribution. More-
over, the J/ψ angular distribution has contributions from several
amplitudes that are not well determined. The same arguments ap-
ply to the exclusion of the χc1 mass region (3.48–3.54 GeV/c2).
We perform separate fits to the J/ψ and χc1 with Gaussian func-
tions using 1-D K S Kπ invariant mass distributions from signal MC
and data. After comparing the obtained widths we determine the
degradation of the resolution in data. Taking this into account, we
recalculate the detector resolution obtained from signal MC in the
ηc and ηc(2S) regions. We obtain σ(ηc) = (6.2 ± 1.1) MeV and
σ(ηc(2S)) = (9.8 ± 1.7) MeV.

The fitting function can be represented as the square of the ab-
solute value of the sum of the signal and non-resonant amplitudes
integrated over all variables except M(K S Kπ) and cos θ :

F (s, x) =
∫ ∫ ∫ x+ δ

2∫
x− δ

2

s+ 

2∫

s− 

2

(
1 + ε1x′ + ε2x′2)

·
∣∣∣∣
( √

N

s′ − M2 + iMΓ
Aη

(
q2

1,q2
2

) + αA S
(
q2

1,q2
2

))
S
(
x′)

+ β A P
(
q2

1,q2
2

)
P
(
x′)

+ γ AD
(
q2

1,q2
2

)
D

(
x′)∣∣∣∣

2

ds′ dx′ dq2
1 dq2

2 dφ, (1)

where x = cos θ , s = M2(K S Kπ); q2
1 and q2

2 are Dalitz plot vari-
ables; ε1 and ε2 are constants that characterize the efficiency de-
pendence on x and are determined from MC; δ and 
 are the bin
widths in cos θ and M(K S Kπ) invariant mass, respectively; M and
Γ are mass and width of the ηc (ηc(2S)) meson; N is the ηc

(ηc(2S)) signal yield; α, β , γ are the relative fractions of the S-,

P-, and D-waves, respectively; S = 1√
2

, P =
√

3
2 x, D = 3

2

√
5
2 (x2 − 1

3 )

are the functions characterizing the angular dependence of the S-,
P-, and D-waves, respectively; Aη is the signal S-wave amplitude,
A S,P ,D are the background S-, P-, and D-wave amplitudes, respec-
tively. The absolute values of the amplitudes squared are normal-
ized to unity:∫ ∫ ∫ ∣∣Aη,S,P ,D

(
q2

1,q2
2

)∣∣2
dq2

1 dq2
2 dφ = 1. (2)

To account for the momentum resolution, Eq. (1) is convolved with
a Gaussian detector resolution function that is determined from
the MC and calibrated from the J/ψ (χc1) width in data.

This function is determined by 15 parameters: N , M , Γ , α, β , γ
described above; 6 parameters (	ηS , 
ηS , 	ηP , 
ηP , 	ηD , 
ηD )
characterizing the interference between the signal amplitude Aη

and background amplitudes A S,P ,D ; 3 parameters (ΠS P , ΠS D ,
ΠP D ) describing the contributions from the interference between
the background amplitudes A S,P ,D . In particular,

	ηi + i
ηi =
∫ ∫ ∫

Aη

(
q2

1,q2
2

)
A∗

i

(
q2

1,q2
2

)
dq2

1 dq2
2 dφ, (3)

Πi j =
∫ ∫ ∫

	(
Ai

(
q2

1,q2
2

)
A∗

j

(
q2

1,q2
2

))
dq2

1 dq2
2 dφ, (4)

where i, j = S, P , D and i �= j.
Since the function F (s, x) is a sum of the ηc (ηc(2S)) Breit–
Wigner and S-, P-, and D-waves, it can be represented as a rational
function of s and x:

F (s, x) = 1 + ε1x + ε2x2

(s − M2)2 + M2Γ 2

2∑
i=0

4∑
j=0

Cij s
i x j . (5)

In its most general form, such a function has 15 independent coef-
ficients (Cij) in the numerator and two (M and Γ ) in the denomi-
nator, however, in our case some coefficients are not independent:

1. C03 = M2
(
M2 + Γ 2

)
C23, 3. C04 = M2

(
M2 + Γ 2

)
C24,

2. C13 = −2M2C23, 4. C14 = −2M2C24.

Thus, we have (15 + 2 − 4 = 13) independent terms only,
which is not enough to determine all 15 parameters of the func-
tion F (s, x). Two (15 − 13 = 2) of the parameters must be either
obtained from other measurements or allowed to vary over the full
allowed range. Since we have no additional information on these
parameters, we scan over them. The result does not depend on the
choice of the two scanned parameters. Since the interference is
more significant in the S-wave, we choose α and 
ηS . To perform
this scan, we randomly sample α and 
ηS in a reasonable range3

with the remaining 13 parameters free. After fitting the distribu-
tions we obtain a set of parameters and a χ2. No additional local
minima are found.

The dependences of the signal yields on χ2 are shown in Fig. 8.
In the ηc case, one can see that this distribution has a “plateau”,
which consists of fits with different Nsignal (and other fit param-
eters) and the same χ2. This feature arises because our system
of equations for the fit parameters is underdetermined. The varia-
tion of parameters within this plateau will be referred to as the
model uncertainty of our analysis and the average of their sta-
tistical errors as the statistical uncertainty. In the ηc(2S) case,
the minimum χ2 plateau is not reached, because the parame-
ters 	ηS,ηP ,ηD , 
ηS,ηP ,ηD , and ΠS P ,S D,P D tend to their bounds.4

These bounds make our system of equations fully determined,
so we can float the parameters α and 
ηS . In that case, the
model and statistical errors cannot be separated. Thus we ob-
tain Nsignal = 920 ± 50(stat) ± 170(model) for the ηc decay and
Nsignal = 128+83

−58(stat + model) for the ηc(2S) decay.
Projections of the fits using the function F (s, x) are shown in

Figs. 9 and 10.
The fit procedure described above was also applied to MC signal

samples. The obtained number of signal events was used to deter-
mine the detection efficiency ((9.32 ± 0.10)% and (10.18 ± 0.10)%
for ηc and ηc(2S) decays, respectively) and hence to calculate the
product branching fractions.

The decay B± → K ±(K S Kπ)0 has two possible final states:
K ±K S K ±π∓ and K ±K S K ∓π± . We assume that the ηc decay sig-
nal amplitudes are the same, but the non-resonant contributions
(α, β , γ ) could be different in each decay channel. Because of lim-
ited statistics we do not treat these final states separately. A single
distribution (1) effectively describes the incoherent sum of two
distributions for the two decay channels. This does not affect the
parameters of ηc (ηc(2S)) states, but the parameters describing the
non-resonant part obtained in the fit take effective values that de-
pend on both non-resonant amplitudes.

The method described above was checked using toy MC, which
showed that the described procedure gives parameter values con-

3 The scan range of parameter α is chosen so that it includes the minimum χ2

region. It is [0 : 9] for the ηc and [1 : 11] for the ηc(2S) analyses. The parameter

ηS is varied over the entire physical region [−1 : 1].

4 By definition, 	ηS,ηP ,ηD , 
ηS,ηP ,ηD , and ΠS P ,S D,P D vary in the interval [−1 : 1].
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Fig. 8. The dependences of the number of signal events on χ2 for the ηc (left) and ηc(2S) (right) decay analyses. One should note that the χ2 axis of the left plot covers
a much smaller range than that of the right plot.

Fig. 9. Projections of the fit in K S Kπ invariant mass in the ηc mass region (left) and cos θ in the ηc invariant mass signal (center) and sideband (right) regions. The
combinatorial background is subtracted. The gap near 3.1 GeV/c2 is due to the J/ψ veto. The bin size along the cos θ axis is 0.2. Along the M(K S Kπ) axis the bin size is
10 MeV/c2 in the signal region and 150/130 MeV/c2 in the left/right sideband region.

Fig. 10. Projections of the fit in K S Kπ invariant mass in the ηc(2S) mass region (left) and cos θ in the ηc(2S) invariant mass signal (center) and sideband (right) regions.
The combinatorial background is subtracted. The gap near 3.5 GeV/c2 is due to the χc1 veto. The bin size along the cos θ axis is 0.2. Along the M(K S Kπ) axis the bin size
is 16 MeV/c2 in the signal region and 130 MeV/c2 in the sideband region.
sistent with the generated ones. Moreover, a generic MC test was
performed that included a full simulation of all b → c decays at
the Υ (4S) without interference. This test verified that the signal
determination is not biased and gave an interference value consis-
tent with zero.

4. Systematic uncertainties

We evaluated possible sources of systematic uncertainties in
the product branching fractions. The number of B B̄ pairs is cal-
culated from the difference of the number of hadronic events on
resonance and the scaled number of those off-resonance. The sys-
tematic error is dominated by the uncertainty in the scale factor
and is equal to ∼1.3%. We assume that the combinatorial back-
ground can be parameterized with a first-order polynomial. To
obtain the background shape uncertainty, we describe the back-
ground by a second-order polynomial and compare the results. The
uncertainty on the K S decay branching fraction is taken from [6].
The contribution of the K S reconstruction uncertainty was esti-
mated in the Belle experiment to be 4.4% [21]. In our fitting pro-
cedure we take into account the efficiency dependence on cos θ

and assume that it does not depend on the K S Kπ invariant mass.
By adding a linear dependence on M(K S Kπ) we estimate the cor-
responding systematic error. Moreover, we take into account the
dependence of the efficiency on the ηc and ηc(2S) decay mod-
els, such as K K ∗ , K K ∗

0 (1430), and K K ∗
2 (1430). The corresponding
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Table 3
Systematic uncertainties of the product branching fractions (in %).

Source B± → K ±(K S Kπ)0

ηc ηc(2S)

Number of B B̄ pairs 1.3 1.3
B(K S → π+π−) 0.1 0.1
Model efficiency dependence +8.6

−6.7
+2.0
−1.5

Background approximation – +2.3
Bin size −3.3 +13.3

−3.9

E cut −2.2 +2.3
Detector resolution +1.1 +4.7

−8.6
Minv efficiency dependence +2.2 +0.8
Track reconstruction 3 3
K ± identification 1.6 1.6
π± identification 1.5 1.5
K S reconstruction 4.4 4.4

Total, % +10.7
−9.8

+15.8
−11.9

Table 4
Systematic uncertainties of masses and widths of the ηc and ηc(2S) mesons (in
MeV/c2).

Source ηc ηc(2S)

Mass Width Mass Width

Background approximation – – +0.2 −0.1
Bin size +0.2 −1.0 −1.1 +2.4
Detector resolution −0.1 +1.0

−1.2
+0.5
−0.1

+1.0
−0.9

Scale uncertainty −2.0 – −1.7 –
Effect of identical kaons +0.5 +0.3 +0.5 +0.3

Total, MeV/c2 +0.5
−2.0

+1.0
−1.6

+0.7
−2.0

+2.6
−0.9

contribution to the systematic uncertainty is estimated by vary-
ing the efficiency obtained using these models and taking the
difference in the results. An analysis of the charged track re-
construction uncertainty as a function of particle momenta has
been performed in Belle data and gave an estimate of 1% per
charged track. To determine the errors due to K and π meson
identification, data from analysis of the process D∗+ → D0π+
followed by the decay D0 → K −π+ were used. The uncertainty
in K ± identification is 0.8% per K meson and the correspond-
ing value for π± identification is 0.5% per π meson. We also
take into account the deviation of MC from the data by apply-
ing a correction to the efficiency: εData

εMC
is 0.9996 for each kaon

and 0.9756 for each pion. We vary the bin size along the x axis
from 0.15 to 0.225, the 
E window from 20 MeV to 40 MeV, and
the detector resolution within the limits of its statistical uncer-
tainty.

Sources of systematic uncertainties for masses and widths in-
clude the background parameterization, bin size, and detector res-
olution as described above, as well as a scale uncertainty and the
effect of identical kaons in the final state. The scale uncertainty is
determined from a comparison of masses of the J/ψ (χc1) reso-
nances, which were obtained by fitting the K S Kπ invariant mass
distribution, with the world average values [6]. In case two kaons
of the same charge are present in the final state, the charmonium
amplitude is a sum of two amplitudes corresponding to K S K(1)π
and K S K(2)π combinations. This can lead to the deformation of
the K S Kπ invariant mass distribution in the region of phase space
where the K S K(1)π and K S K(2)π invariant mass values overlap.
We use toy MC to estimate this effect and take it into account as
an additional systematic error.

All the contributions to the systematic uncertainties are listed
in Table 3 for the product branching fractions and in Table 4 for
the masses and widths.
5. Results and discussion

Table 5 shows a comparison of the results obtained assum-
ing no interference (1-D fits to the 
E and to the K S Kπ in-
variant mass distributions) and those obtained using the analysis
described above. One can see that taking interference into account
leads to the introduction of a model error for the product branch-
ing fractions B(B± → K ±ηc)B(ηc → K S K ±π∓) (for the ηc mass
and width this error turns out to be negligibly small). In the ηc(2S)

decay analysis the model error is not listed separately, but the re-
sults differ noticeably from those that assume no interference.

Table 2 shows that there is a large spread in the ηc(2S) width
values. A possible explanation of this spread is that the previous
studies did not take interference into account. For each of the stud-
ied processes the interference could have a different effect on the
results and shift the ηc(2S) mass value significantly. Thus it is im-
portant to take interference into account.

In addition to affecting the value of the branching fraction,
interference changes the Breit–Wigner shape. This effect can al-
low the improvement of the statistical accuracy with which the
Breit–Wigner width is determined. In particular, the ηc(2S) width,
obtained in the present work, has a rather good accuracy, despite
limited statistics and a detector resolution broader than the intrin-
sic width. The interference deforms the Breit–Wigner, lengthening
its tail and thus improves the fit to the width (see Fig. 10).

6. Conclusion

We report a study of the decay B± → K ±(cc̄), where the (cc̄)
state decays to (K S Kπ)0 and includes the ηc and ηc(2S) charmo-
nia states. Both decay channels contain B± → K ±(K S Kπ)0 decays
without intermediate charmonia that interfere with the signal. For
the first time, the analysis takes interference into account with no
assumptions on the phase or absolute value of the interference.

As a result, we obtain an estimate of the model error for
B(B± → K ±ηc)B(ηc → K S K ±π∓):

B
(

B± → K ±ηc
)

B
(
ηc → K S K ±π∓)

= (
26.7 ± 1.4(stat)+2.9

−2.6(syst) ± 4.9(model)
) × 10−6.

For B(B± → K ±ηc(2S))B(ηc(2S) → K S K ±π∓), the model error
from interference is not listed separately:

B
(

B± → K ±ηc(2S)
)

B
(
ηc(2S) → K S K ±π∓)

= (
3.4+2.2

−1.5(stat + model)+0.5
−0.4(syst)

) × 10−6.

We also obtain the masses and widths of ηc and ηc(2S). For
the ηc meson parameters the model error is negligibly small:

M(ηc) = 2985.4 ± 1.5(stat)+0.5
−2.0(syst) MeV/c2,

Γ (ηc) = 35.1 ± 3.1(stat)+1.0
−1.6(syst) MeV/c2.

For the ηc(2S) meson the model and statistical uncertainties can-
not be separated:

M
(
ηc(2S)

) = 3636.1+3.9
−4.2(stat + model)+0.7

−2.0(syst) MeV/c2,

Γ
(
ηc(2S)

) = 6.6+8.4
−5.1(stat + model)+2.6

−0.9(syst) MeV/c2.

For the ηc(2S) the interference has a dramatic effect on the width
(see Table 5).

These results are consistent with those obtained in the most ac-
curate existing measurements. Our errors are comparable to those
in other experiments despite the fact that they include additional
uncertainty related to interference effects.
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Table 5
Comparison of the results obtained under the assumption of no interference between the signal and the
non-resonant contribution and those obtained with interference.

No interference Taking interference into account

B± → K ±ηc , ηc → (K S Kπ)0

B × B, 10−6 24.0 ± 1.2(stat)+2.1
−2.0(syst) 26.7 ± 1.4(stat)+2.9

−2.6(syst) ± 4.9(model)

Mass, MeV/c2 2984.8 ± 1.0(stat)+0.1
−2.0(syst) 2985.4 ± 1.5(stat)+0.5

−2.0(syst)

Width, MeV/c2 35.4 ± 3.6(stat)+3.0
−2.1(syst) 35.1 ± 3.1(stat)+1.0

−1.6(syst)

B± → K ±ηc(2S), ηc(2S) → (K S Kπ)0

B × B, 10−6 3.1 ± 0.8(stat) ± 0.2(syst) 3.4+2.2
−1.5(stat + model)+0.5

−0.4(syst)

Mass, MeV/c2 3646.5 ± 3.7(stat)+1.2
−2.9(syst) 3636.1+3.9

−4.2(stat + model)+0.7
−2.0(syst)

Width, MeV/c2 41.1 ± 12.0(stat)+6.4
−10.9(syst) 6.6+8.4

−5.1(stat + model)+2.6
−0.9(syst)
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Appendix A

After raising the absolute value to the second power F (s, x)
(Eq. (1)) convolved with the resolution Gaussian function can be
written as:

F (s, x) =
x+ δ

2∫
x− δ

2

(
1 + ε1x′ + ε2x′2)[S2(x′)(Iηη(s) + α2


+ 2
√

Nα IηS(s)
) + P 2(x′)β2
 + D2(x′)γ 2


+ 2S
(
x′)P

(
x′)β(√

N IηP (s) + αΠS P 

)

+ 2S
(
x′)D

(
x′)γ (√

N IηD (s) + αΠS D

)

+ 2P
(
x′)D

(
x′)βγ ΠP D


]
dx′, (6)

where we use the following notations:
Iηη(s) =
∫ ∫ ∫ s+ 


2∫
s− 


2

∣∣∣∣
√

N

s′ − M2 + iMΓ
Aη

(
q2

1,q2
2

)∣∣∣∣
2

⊗ exp(− s′2

2σ 2 )√
2πσ

ds′ dq2
1 dq2

2 dφ

=
s+ 


2∫
s− 


2

∣∣∣∣
√

N

s′ − M2 + iMΓ

∣∣∣∣
2

⊗ exp(− s′2

2σ 2 )√
2πσ

ds′, (7)

IηS(s) =
∫ ∫ ∫ s+ 


2∫
s− 


2

	
(

1

s′ − M2 + iMΓ
Aη

(
q2

1,q2
2

)
A∗

S

(
q2

1,q2
2

))

⊗ exp(− s′2

2σ 2 )√
2πσ

ds′ dq2
1 dq2

2 dφ

= 	ηS	
[ s+ 


2∫
s− 


2

(
1

s′ − M2 + iMΓ

)
⊗ exp(− s′2

2σ 2 )√
2πσ

ds′
]

+ 
ηS

[ s+ 


2∫
s− 


2

(
1

s′ − M2 + iMΓ

)
⊗ exp(− s′2

2σ 2 )√
2πσ

ds′
]
,

(8)

IηP (s) =
∫ ∫ ∫ s+ 


2∫
s− 


2

	
(

1

s′ − M2 + iMΓ
Aη

(
q2

1,q2
2

)
A∗

P

(
q2

1,q2
2

))

⊗ exp(− s′2

2σ 2 )√
2πσ

ds′ dq2
1 dq2

2 dφ

= 	ηP 	
[ s+ 


2∫
s− 


2

(
1

s′ − M2 + iMΓ

)
⊗ exp(− s′2

2σ 2 )√
2πσ

ds′
]

+ 
ηP 

[ s+ 


2∫
s− 


2

(
1

s′ − M2 + iMΓ

)
⊗ exp(− s′2

2σ 2 )√
2πσ

ds′
]
,

(9)
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Table 6
Fit results.

Parameter B± → K ±ηc , ηc → (K S Kπ)0 B± → K ±ηc(2S), ηc(2S) → (K S Kπ)0

N 920 ± 50(stat) ± 170(model) 128+83
−58(stat + model)

α 4.8 ± 2.3(model) 8.4+1.1
−3.3(stat + model)

β 5.3 ± 1.6(stat) ± 2.1(model) 3.7+3.8
−2.1(stat + model)

γ 7.9 ± 1.4(stat) 6.2+1.5
−1.8(stat + model)

ξηS 0.37 ± 0.24(stat) ± 0.18(model) 0.84+0.16
−0.45(stat + model)


ηS −0.06 ± 0.80(model) −0.39+1.12
−0.53(stat + model)

ξηP 0.48 ± 0.22(stat) ± 0.19(model) 0.51+0.49
−0.51(stat + model)

θηP , rad 0.08 ± 0.65(stat) −0.24+3.14
−3.14(stat + model)

ξηD 0.22 ± 0.16(stat) ± 0.02(model) 0.81+0.19
−0.62(stat + model)

θηD , rad 0.64 ± 0.80(stat) 0.58+0.85
−1.10(stat + model)

ΠS P −0.74 ± 0.46(stat) ± 0.23(model) −1+2
−0(stat + model)

ΠS D −0.11 ± 0.34(stat) ± 0.42(model) −1+2
−0(stat + model)

ΠP D 0.24 ± 0.77(stat) ± 0.50(model) −0.95+1.95
−0.05(stat + model)

M , MeV/c2 2985.4 ± 1.5(stat) 3636.1+3.9
−4.2(stat + model)

Γ , MeV/c2 35.1 ± 3.1(stat) 6.6+8.4
−5.1(stat + model)
IηD(s) =
∫ ∫ ∫ s+ 


2∫
s− 


2

	
(

1

s′ − M2 + iMΓ
Aη

(
q2

1,q2
2

)
A∗

D

(
q2

1,q2
2

))

⊗ exp(− s′2

2σ 2 )√
2πσ

ds′ dq2
1 dq2

2 dφ

= 	ηD	
[ s+ 


2∫
s− 


2

(
1

s′ − M2 + iMΓ

)
⊗ exp(− s′2

2σ 2 )√
2πσ

ds′
]

+ 
ηD

[ s+ 


2∫
s− 


2

(
1

s′ − M2 + iMΓ

)
⊗ exp(− s′2

2σ 2 )√
2πσ

ds′
]
,

(10)

	ηS =
∫ ∫ ∫

	(
Aη

(
q2

1,q2
2

)
A∗

S

(
q2

1,q2
2

))
dq2

1 dq2
2 dφ

= ξηS

√
1 − 
2

ηS , (11)


ηS =
∫ ∫ ∫


(
Aη

(
q2

1,q2
2

)
A∗

S

(
q2

1,q2
2

))
dq2

1 dq2
2 dφ, (12)

	ηP =
∫ ∫ ∫

	(
Aη

(
q2

1,q2
2

)
A∗

P

(
q2

1,q2
2

))
dq2

1 dq2
2 dφ

= ξηP cos θηP , (13)


ηP =
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Aη

(
q2

1,q2
2

)
A∗

P

(
q2

1,q2
2

))
dq2

1 dq2
2 dφ

= ξηP sin θηP , (14)

	ηD =
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	(
Aη

(
q2

1,q2
2

)
A∗

D

(
q2

1,q2
2

))
dq2

1 dq2
2 dφ

= ξηD cos θηD , (15)


ηD =
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(
Aη

(
q2

1,q2
2

)
A∗

D

(
q2

1,q2
2

))
dq2

1 dq2
2 dφ

= ξηD sin θηD , (16)

ΠS P =
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	(
A S

(
q2

1,q2
2

)
A∗

P

(
q2

1,q2
2

))
dq2

1 dq2
2 dφ, (17)
ΠS D =
∫ ∫ ∫

	(
A S

(
q2

1,q2
2

)
A∗

D

(
q2

1,q2
2

))
dq2

1 dq2
2 dφ, (18)

ΠP D =
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	(
A P

(
q2

1,q2
2

)
A∗

D

(
q2

1,q2
2

))
dq2

1 dq2
2 dφ. (19)

Thus, the function F is determined by 15 parameters listed in
Table 6. Parameters α and 
ηS are fixed in the ηc case, so they do
not have a statistical error. In case the model error is not quoted,
it is negligibly small compared to the statistical one.

Function F (s, x) can be represented as a rational function of s
and x:

F (s, x) = 1 + ε1x + ε2x2

(s − M2)2 + M2Γ 2

2∑
i=0

4∑
j=0

Cij s
i x j, (20)

where

(1) C24 = 45
8 γ 2,

(2) C23 = 3
2

√
15βγΠP D ,

(3) C22 = 3
2 β2 − 15

4 γ 2 + 3
2

√
5αγΠS D ,

(4) C21 = √
3αβΠS P −

√
15
2 βγΠP D ,

(5) C20 = 1
2 α2 + 5

8 γ 2 −
√

5
2 αγΠS D ,

(6) C14 = −2M2C24,
(7) C13 = −2M2C23,
(8) C12 = 3

2

√
5
√

Nγ	ηD − 2M2C22,

(9) C11 = √
3
√

Nβ	ηP − 2M2C21,

(10) C10 = √
Nα	ηS −

√
5

2

√
Nγ	ηD − 2M2C20,

(11) C04 = M2(M2 + Γ 2)C24,
(12) C03 = M2(M2 + Γ 2)C23,
(13) C02 = 3

2

√
5
√

Nγ (MΓ 
ηD − M2	ηD) + M2(M2 + Γ 2)C22,

(14) C01 = √
3
√

Nβ(MΓ 
ηP − M2	ηP ) + M2(M2 + Γ 2)C21,

(15) C00 = 1
2 N + √

Nα(MΓ 
ηS − M2	ηS ) −
√

5
2

√
Nγ (MΓ 
ηD −

M2	ηD) + M2(M2 + Γ 2)C20.
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