224 research outputs found

    The Maximum Mass of Star Clusters

    Get PDF
    When an universal untruncated star cluster initial mass function (CIMF) described by a power-law distribution is assumed, the mass of the most massive star cluster in a galaxy (M_max) is the result of the size-of-sample (SoS) effect. This implies a dependence of M_max on the total number of star clusters (N). The SoS effect also implies that M_max within a cluster population increases with equal logarithmic intervals of age. This is because the number of clusters formed in logarithmic age intervals increases (assuming a constant cluster formation rate). This effect has been observed in the SMC and LMC. Based on the maximum pressure (P_int) inside molecular clouds, it has been suggested that a physical maximum mass (M_max[phys]) should exist. The theory predicts that M_max[phys] should be observable, i.e. lower than M_max that follows from statistical arguments, in big galaxies with a high star formation rate. We compare the SoS relations in the SMC and LMC with the ones in M51 and model the integrated cluster luminosity function (CLF) for two cases: 1) M_max is determined by the SoS effect and 2) M_max=M_max[phys]=constant. The observed CLF of M51 and the comparison of the SoS relations with the SMC and LMC both suggest that there exists a M_max[phys] of 5*10^5 M_sun in M51. The CLF of M51 looks very similar to the one observed in the ``Antennae'' galaxies. A direct comparison with our model suggests that there M_max[phys]=2*10^6 M_sun.Comment: 4 pages, contribution to "Globular Clusters: Guides to Galaxies", March 6th-10th, 200

    Star cluster formation and star formation: the role of environment and star-formation efficiencies

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/s10509-009-0088-5By analyzing global starburst properties in various kinds of starburst and post-starburst galaxies and relating them to the properties of the star cluster populations they form, I explore the conditions for the formation of massive, compact, long-lived star clusters. The aim is to determine whether the relative amount of star formation that goes into star cluster formation as opposed to field star formation, and into the formation of massive long-lived clusters in particular, is universal or scales with star-formation rate, burst strength, star-formation efficiency, galaxy or gas mass, and whether or not there are special conditions or some threshold for the formation of star clusters that merit to be called globular clusters a few billion years later.Peer reviewe

    The young star cluster system of the Antennae galaxies

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/s10509-009-0103-xThe study of young star cluster (YSC) systems, preferentially in starburst and merging galaxies, has seen great interest in the recent past, as it provides important input to models of star formation. However, even some basic properties (such as the luminosity function; LF) of YSC systems are still being debated. Here, we study the photometric properties of the YSC system in the nearest major merger system, the Antennae galaxies. We find evidence for the existence of a statistically significant turnover in the LF.Peer reviewe

    Star and cluster formation in extreme environments

    Full text link
    Current empirical evidence on the star-formation processes in the extreme, high-pressure environments induced by galaxy encounters (mostly based on high-resolution Hubble Space Telescope observations) strongly suggests that star CLUSTER formation is an important and perhaps even the dominant mode of star formation in such starburst events. The sizes, luminosities, and mass estimates of the young massive star clusters (YMCs) are entirely consistent with what is expected for young Milky Way-type globular clusters (GCs). Recent evidence lends support to the scenario that GCs, which were once thought to be the oldest building blocks of galaxies, are still forming today. Here, I present a novel empirical approach to assess the shape of the initial-to-current YMC mass functions, and hence their possible survival chances for a Hubble time.Comment: 6 pages, LaTeX with Kluwer style files included; to appear in: "Starbursts - from 30 Doradus to Lyman break galaxies" (Cambridge UK, September 2004; talk summary), Astrophysics & Space Science Library, eds. de Grijs R., Gonzalez Delgado R.M., Kluwer: Dordrech

    The effect of the dynamical state of clusters on gas expulsion and infant mortality

    Get PDF
    The star formation efficiency (SFE) of a star cluster is thought to be the critical factor in determining if the cluster can survive for a significant (>50 Myr) time. There is an often quoted critical SFE of ~30 per cent for a cluster to survive gas expulsion. I reiterate that the SFE is not the critical factor, rather it is the dynamical state of the stars (as measured by their virial ratio) immediately before gas expulsion that is the critical factor. If the stars in a star cluster are born in an even slightly cold dynamical state then the survivability of a cluster can be greatly increased.Comment: 6 pages, 2 figures. Review talk given at the meeting on "Young massive star clusters - Initial conditions and environments", E. Perez, R. de Grijs, R. M. Gonzalez Delgado, eds., Granada (Spain), September 2007, Springer: Dordrecht. Replacement to correct mistake in a referenc

    Tracing the evolution of nearby early-type galaxies in low density environments. The Ultraviolet view from GALEX

    Full text link
    We detected recent star formation in nearby early-type galaxies located in low density environments, with GALEX Ultraviolet (UV) imaging. Signatures of star formation may be present in the nucleus and in outer rings/arm like structures. Our study suggests that such star formation may be induced by different triggering mechanisms, such as the inner secular evolution driven by bars, and minor accretion phenomena. We investigate the nature of the (FUV-NUV) color vs. Mg2 correlation, and suggest that it relates to "downsizing" in galaxy formation.Comment: Conference "UV Universe 2010" S. Petersburg 31 May - 3 June, 2010 Accepted for publication in Astrophysics & Space Science . The final publication is available at http://www.springerlink.co

    The Baltimore and Utrecht models for cluster dissolution

    Get PDF
    The analysis of the age distributions of star cluster samples of different galaxies has resulted in two very different empirical models for the dissolution of star clusters: the Baltimore model and the Utrecht model. I describe these two models and their differences. The Baltimore model implies that the dissolution of star clusters is mass independent and that about 90% of the clusters are destroyed each age dex, up to an age of about a Gyr, after which point mass-dependent dissolution from two-body relaxation becomes the dominant mechanism. In the Utrecht model, cluster dissolution occurs in three stages: (i) mass-independent infant mortality due to the expulsion of gas up to about 10 Myr; (ii) a phase of slow dynamical evolution with strong evolutionary fading of the clusters lasting up to about a Gyr; and (iii) a phase dominated by mass dependent-dissolution, as predicted by dynamical models. I describe the cluster age distributions for mass-limited and magnitude-limited cluster samples for both models. I refrain from judging the correctness of these models.Comment: 3 pages, 1 figure, to appear in "Young Massive Star Clusters - Initial Conditions and Environment", 2008, Astrophysics and Space Science, Eds. E. Perez, R. de Grijs and R.M. Gonzalez Delgad

    HI in the Outskirts of Nearby Galaxies

    Full text link
    The HI in disk galaxies frequently extends beyond the optical image, and can trace the dark matter there. I briefly highlight the history of high spatial resolution HI imaging, the contribution it made to the dark matter problem, and the current tension between several dynamical methods to break the disk-halo degeneracy. I then turn to the flaring problem, which could in principle probe the shape of the dark halo. Instead, however, a lot of attention is now devoted to understanding the role of gas accretion via galactic fountains. The current Λ\rm \Lambda cold dark matter theory has problems on galactic scales, such as the core-cusp problem, which can be addressed with HI observations of dwarf galaxies. For a similar range in rotation velocities, galaxies of type Sd have thin disks, while those of type Im are much thicker. After a few comments on modified Newtonian dynamics and on irregular galaxies, I close with statistics on the HI extent of galaxies.Comment: 38 pages, 17 figures, invited review, book chapter in "Outskirts of Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library, Springer, in pres

    Globular cluster luminosity function as distance indicator

    Full text link
    Globular clusters are among the first objects used to establish the distance scale of the Universe. In the 1970-ies it has been recognized that the differential magnitude distribution of old globular clusters is very similar in different galaxies presenting a peak at M_V ~ -7.5. This peak magnitude of the so-called Globular Cluster Luminosity Function has been then established as a secondary distance indicator. The intrinsic accuracy of the method has been estimated to be of the order of ~0.2 mag, competitive with other distance determination methods. Lately the study of the Globular Cluster Systems has been used more as a tool for galaxy formation and evolution, and less so for distance determinations. Nevertheless, the collection of homogeneous and large datasets with the ACS on board HST presented new insights on the usefulness of the Globular Cluster Luminosity Function as distance indicator. I discuss here recent results based on observational and theoretical studies, which show that this distance indicator depends on complex physics of the cluster formation and dynamical evolution, and thus can have dependencies on Hubble type, environment and dynamical history of the host galaxy. While the corrections are often relatively small, they can amount to important systematic differences that make the Globular Cluster Luminosity Function a less accurate distance indicator with respect to some other standard candles.Comment: Accepted for publication in Astrophysics and Space Science. Review paper based on the invited talk at the conference "The Fundamental Cosmic Distance Scale: State of the Art and Gaia Perspective", Naples, May 2011. (13 pages, 8 figures

    Inner Polar Rings and Disks: Observed Properties

    Full text link
    A list of galaxies with inner regions revealing polar (or strongly inclined to the main galactic plane) disks and rings is compiled from the literature data. The list contains 47 galaxies of all morphological types, from E to Irr. We consider the statistics of the parameters of polar structures known from observations. The radii of the majority of them do not exceed 1.5 kpc. The polar structures are equally common in barred and unbarred galaxies. At the same time, if a galaxy has a bar (or a triaxial bulge), this leads to the polar disk stabilization - its axis of rotation usually coincides with the major axis of the bar. More than two thirds of all considered galaxies reveal one or another sign of recent interaction or merging. This fact indicates a direct relation between the external environment and the presence of an inner polar structure.Comment: 12 pages, 3 figures, accepted to Astrophysical Bulletin. Minor changes and corrections are still possibl
    • …
    corecore