7,131 research outputs found

    Measurement of the ppbar to ttbar production cross section at sqrt(s)=1.96 TeV in the fully hadronic decay channel

    Get PDF
    A measurement of the top quark pair production cross section in proton anti-proton collisions at an interaction energy of sqrt(s)=1.96 TeV is presented. This analysis uses 405 pb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider. Fully hadronic ttbar decays with final states of six or more jets are separated from the multijet background using secondary vertex tagging and a neural network. The ttbar cross section is measured as sigma(ttbar)=4.5 -1.9 +2.0 (stat) -1.1 +1.4 (syst) +/- 0.3 (lumi) pb for a top quark mass of m(t) = 175 GeV/c^2.Comment: 10 pages, 10 figures, submitted to Phys. Rev.

    Search for right-handed W bosons in top quark decay

    Full text link
    We present a measurement of the fraction f+ of right-handed W bosons produced in top quark decays, based on a candidate sample of ttˉt\bar{t} events in the lepton+jets decay mode. These data correspond to an integrated luminosity of 230pb^-1, collected by the DO detector at the Fermilab Tevatron ppˉp\bar{p} Collider at sqrt(s)=1.96 TeV. We use a constrained fit to reconstruct the kinematics of the ttˉt\bar{t} and decay products, which allows for the measurement of the leptonic decay angle θ\theta^* for each event. By comparing the cosθ\cos\theta^* distribution from the data with those for the expected background and signal for various values of f+, we find f+=0.00+-0.13(stat)+-0.07(syst). This measurement is consistent with the standard model prediction of f+=3.6x10^-4.Comment: Submitted to Physical Review D Rapid Communications 7 pages, 3 figure

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of Semileptonic Branching Fractions of B Mesons to Narrow D** States

    Get PDF
    Using the data accumulated in 2002-2004 with the DO detector in proton-antiproton collisions at the Fermilab Tevatron collider with centre-of-mass energy 1.96 TeV, the branching fractions of the decays B -> \bar{D}_1^0(2420) \mu^+ \nu_\mu X and B -> \bar{D}_2^{*0}(2460) \mu^+ \nu_\mu X and their ratio have been measured: BR(\bar{b}->B) \cdot BR(B-> \bar{D}_1^0 \mu^+ \nu_\mu X) \cdot BR(\bar{D}_1^0 -> D*- pi+) = (0.087+-0.007(stat)+-0.014(syst))%; BR(\bar{b}->B)\cdot BR(B->D_2^{*0} \mu^+ \nu_\mu X) \cdot BR(\bar{D}_2^{*0} -> D*- \pi^+) = (0.035+-0.007(stat)+-0.008(syst))%; and (BR(B -> \bar{D}_2^{*0} \mu^+ \nu_\mu X)BR(D2*0->D*- pi+)) / (BR(B -> \bar{D}_1^{0} \mu^+ \nu_\mu X)\cdot BR(\bar{D}_1^{0}->D*- \pi^+)) = 0.39+-0.09(stat)+-0.12(syst), where the charge conjugated states are always implied.Comment: submitted to Phys. Rev. Let

    Search for Large extra spatial dimensions in the dielectron and diphoton channels in ppˉ\bm{p\bar{p}} collisions at s=\bm{\sqrt{s}=}1.96 TeV

    Full text link
    We report on a search for large extra spatial dimensions in the dielectron and diphoton channels using a data sample of 1.05 \invfb of \ppb collisions at a center-of-mass energy of 1.96 TeV collected by the D0 detector at the Fermilab Tevatron Collider. The invariant mass spectrum of the data agrees well with the prediction of the standard model. We find 95% C.L. lower limits on the effective Planck scale between 2.1 and 1.3 TeV for 2 to 7 extra dimensions.Comment: 7 pages, 3 figures, 3 tables, submitted to Phys. Rev. Let

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Search for R-parity violating supersymmetry via the LLE couplings lambda_{121}, lambda_{122} or lambda_{133} in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    A search for gaugino pair production with a trilepton signature in the framework of R-parity violating supersymmetry via the couplings lambda_121, lambda_122, or lambda_133 is presented. The data, corresponding to an integrated luminosity of L~360/pb, were collected from April 2002 to August 2004 with the D0 detector at the Fermilab Tevatron Collider, at a center-of-mass energy of sqrt(s)=1.96 TeV. This analysis considers final states with three charged leptons with the flavor combinations eel, mumul, and eetau (l=e or mu). No evidence for supersymmetry is found and limits at the 95% confidence level are set on the gaugino pair production cross section and lower bounds on the masses of the lightest neutralino and chargino are derived in two supersymmetric models.Comment: 9 pages, 4 figures (fig2 includes 3 subfigures

    Measurements of differential cross sections of Z/gamma*+jets+X events in proton anti-proton collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present cross section measurements for Z/gamma*+jets+X production, differential in the transverse momenta of the three leading jets. The data sample was collected with the D0 detector at the Fermilab Tevatron proton anti-proton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of 1 fb-1. Leading and next-to-leading order perturbative QCD predictions are compared with the measurements, and agreement is found within the theoretical and experimental uncertainties. We also make comparisons with the predictions of four event generators. Two parton-shower-based generators show significant shape and normalization differences with respect to the data. In contrast, two generators combining tree-level matrix elements with a parton shower give a reasonable description of the the shapes observed in data, but the predicted normalizations show significant differences with respect to the data, reflecting large scale uncertainties. For specific choices of scales, the normalizations for either generator can be made to agree with the measurements.Comment: Published in PLB. 11 pages, 3 figure

    Search for charged massive long-lived particles with the D0 detector

    Get PDF
    We search for charged massive long-lived particles using 1.1 fb1^{-1} of data collected by the D0 detector at the Fermilab Tevatron ppˉp\bar{p} Collider. Time-of-flight information is used to search for pair produced long-lived tau sleptons, gaugino-like charginos, and higgsino-like charginos. We find no evidence of a signal and set 95% C.L. cross section upper limits for staus, which vary from 0.31pb to 0.04pb for stau masses between 60 GeV and 300 GeV. We also set lower mass limits of 206 GeV (171 GeV) for pair produced charged gauginos (higgsinos).Comment: To be submitted to Phys. Rev. Letters, V2: updated the figures and references, V3: final version submitted to PRL and changes in title and abstracts from "stable" to "long-lived
    corecore