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We present cross section measurements for Z/Y*+jets+X production, differential in the trans
verse momenta of the three leading jets. The data sample was collected with the D0 detector at the 
Fermilab Tevatron pp collider at a center-of-mass energy of 1.96 TeV and corresponds to an inte
grated luminosity of 1 fb-1 . Leading and next-to-leading order perturbative QCD predictions are 
compared with the measurements, and agreement is found within the theoretical and experimental 
uncertainties. We also make comparisons with the predictions of four event generators. Two parton- 
shower-based generators show significant shape and normalization differences with respect to the 
data. In contrast, two generators combining tree-level matrix elements with a parton shower give a 
reasonable description of the the shapes observed in data, but the predicted normalizations show sig
nificant differences with respect to the data, reflecting large scale uncertainties. For specific choices 
of scales, the normalizations for either generator can be made to agree with the measurements.

PACS num bers: 12.38.Qk, 13.85.Qk, 13.87.-a
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The production of je ts  in association w ith vector 
bosons (V +  jets) in hadron  collisions is an im portan t pro
cess in quantum  chrom odynam ics (QCD) and is a sig
nificant source of background for m any stan d ard  model 
m easurem ents (e.g., t t  production) and in searches for 
new phenom ena (e.g., supersym m etry). Such m easure
m ents a t the  Ferm ilab Tevatron collider and the CERN 
Large H adron Collider (LHC) rely on accurate descrip
tions of V +  je ts  production by particle-level event gen
erators. These models require validation w ith m easure
m ents of the  properties of the V +  je ts  system , especially 
as a function of je t multiplicity.

In th is L etter, we present new precision m easure
m ents of differential cross sections for the production of 
Z /Y * + je ts+ X  in pp  collisions a t a center-of-mass energy 
of 1.96 TeV. Cross sections are presented in bins of the 
transverse m om entum  (pT ) of the N th je t in events con
tain ing a t least N  =  1, 2, or 3 je ts  and are norm alized 
to  the  m easured inclusive Z /y*  cross section to  reduce 
uncertainties. The N  je ts  are ordered in term s of de
creasing p T , and the Z / 7 * is selected via its decay into 
an electron-positron pair. The d a ta  set corresponds to  
an in tegrated  lum inosity of 1.04 ±  0.06 fb - 1  [1].

Previous Z /Y *+jets m easurem ents have focused pri
m arily on m easuring the je t m ultiplicities for up to  
three [2] and four [3] je ts. In addition, differential dis
tribu tions have been presented for the  highest-pT (lead
ing) je t [4] and for the two leading je ts  [2]. In this Let
ter, we extend the  m easurem ents of differential d istribu
tions by including the th ird  leading je t, and by including 
a larger p ^  range. A m ajor focus of the  L etter is a 
com parison of the differential p T d istributions to  lead
ing order (LO) and next-to-leading (NLO) perturbative 
QCD (pQCD) predictions from MCFM [5], as well as to 
results from several commonly-used event generators. In 
particu lar, we have investigated to  w hat extent the dif
ferential p T distribu tions for the higher je t m ultiplicities 
can be described by parton-show er-based event genera
to rs like PYTHIA [6] and HERWIG [7], and how they  com
pare to  event generator predictions where m atrix  element 
and parto n  shower m erging procedures are adopted, as 
in ALPGEN+PYTHIA [8] and SHERPA [9]. For each pre
diction, the  renorm alization and factorization scale un
certainties are evaluated, and the choices of scales are 
modified to  achieve an improved description of the m ea
surem ents. The presented studies are of vital im portance 
to  understand  the predictive power of the  various event 
generator models for V +  je ts  processes a t bo th  the Teva- 
tro n  and the LHC.

The d a ta  set was recorded using the D0 R un II de
tector, which is described in detail elsewhere [10]. Here 
we give a brief overview of the  m ost relevant com ponents 
for th is analysis. The tra jec to ry  of charged particles are 
reconstructed  using a silicon vertex tracker and a scin
tillating  fiber tracker located inside a superconducting 
solenoidal coil th a t provides a m agnetic field of approx

im ately 2 T. The tracking volume is surrounded by a 
liquid-argon and uranium  calorim eter, divided into elec
trom agnetic and  hadronic sections w ith a granularity  of 
A n X A ^  =  0.1 X 0 .1 , where n is the  pseudorapidity  
[11] and ^  is the  azim uthal angle. The th ird  layer of 
the electrom agnetic calorim eter has a finer g ranularity  of 
A n X A ^  =  0.05 X 0.05. The calorim eter consists of three 
sections, each housed in a separate  cryostat, w ith a cen
tra l section covering |n| <  1.1 and two end calorim eters 
extending the coverage to  |n| ~  4.2. Scintillators between 
the cryostats sample shower energy for 1.1 <  |n| <  1.4.

Electrons are identified based on their characteristic 
energy deposition signature in the calorim eter, including 
the transverse and  longitudinal shower profiles. In addi
tion, a reconstructed  track  m ust point to  the energy de
posit in the  calorim eter, and the m om entum  of the track  
and the calorim eter energy m ust be consistent. Rejection 
against background from photons and je ts  is achieved 
w ith a likelihood discrim inant which uses calorim eter and 
tracking inform ation [12].

C alorim eter je ts  are reconstructed  using the D0 R un II 
iterative seed-based cone je t algorithm  [13], using a 
sp litting /m erg ing  fraction of 0.5 and a cone radius 
TZ = (A y )2 +  (A (p)2 =  0.5, w ith y  being the rap id
ity  [14]. The input objects are clusters of energy de
posited in the calorim eter. Rejection of je ts  arising from 
electronic noise in the  calorim eter is achieved by us
ing quality  and je t shape cuts. The reconstructed  je ts 
are corrected for the  calorim eter response, instrum en
ta l out-of-cone showering effects, and additional energy 
from m ultiple pp  in teractions and previous beam  cross
ings. These corrections were derived by exploiting the 
p T balance in Y +jet and dijet events. The m easurem ents 
are perform ed for je ts  w ith p T >  20 GeV and |n| <  2.5.

Events were required to  pass single or dielectron trig 
ger requirem ents, and to  contain two electron candidates 
w ith opposite sign electric charge, p T >  25 GeV, |n| <  1.1 
or 1.5 <  |n| <  2.5, and a dielectron m ass (M ee) satisfy
ing 65 <  M ee <  115 GeV. A to ta l of 65,759 events pass 
the selection before background subtraction. O f these, 
8,452/1,233/167 events have 1 /2 /3  je ts  or more, w ith 
p Ĵ  above 20 GeV. The efficiency for the  trigger require
m ents to  be satisfied by Z / y * ( ^  e+ e- ) events which ful
fill the  o ther selection criteria  was found to  be ~  100%, 
independent of the  num ber of je ts  in the event.

Backgrounds arising from events which contain two 
real electrons (e.g., W W , tí, and Z / y* ( ^  t + t - )) were 
estim ated using event samples generated w ith PYTHIA 
v6.323, w ith the underlying event model configured using 
Tune A [15]. The events were passed th rough a GEANT- 
based [16] sim ulation of the detector response, and each 
event sample was norm alized to  higher-order theoretical 
predictions [5, 17] before being sub trac ted  from the m ea
sured data . For the inclusive d a ta  sample, the estim ated 
sum  of backgrounds arising from events containing two 
real electrons is ~  0.2%. O f the background sources,
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only t t  production has an average je t m ultiplicity which 
is significantly larger th an  th a t of the  signal process. As 
a result, t t  is the dom inant background for events con
tain ing two or more je ts, contributing up to  6% (3%) to 
the m easured d a ta  for large values of p T of the second 
(th ird) je t. The sum  of all backgrounds containing two 
real electrons is estim ated to  be less th an  one th ird  of the 
s ta tistical uncerta in ty  of the  m easured d a ta  in all bins of 
the m easurem ent. B y studying a sample of same-charge 
dielectron events, backgrounds arising from events w ith 
one or more m is-reconstructed electrons (e.g., W  + je ts  or 
m ultijet events) were found to  be below 1% in the in
clusive Z /y * ( ^  e+ e-  ) sample. For the signal samples 
containing a t least 1, 2, or 3 jets, no sta tistically  signif
icant contribution  from W  + je ts  or m ultijet events was 
observed. For W  + je ts , th is was confirmed independently 
by using an event sam ple generated w ith PYTHIA, yield
ing a contribution  to  the  signal samples a t the  0 .1% level.

The corrections of the  reconstructed  pJ^ spectra  to  the 
particle level [18] were determ ined using an event sam 
ple generated w ith ALPGEN v2.05 +  PYTHIA v6.325 us
ing Tune A. The events were passed th rough a GEANT- 
based sim ulation of the  detector response. The sim ulated 
events were overlaid w ith d a ta  events from random  bunch 
crossings to  reproduce the effects of detector noise and 
additional pp interactions. Particle-level je ts  were defined 
through the D0 Run II iterative seed-based cone je t al
gorithm  w ith R  =  0.5 using a sp litting /m erg ing  fraction 
of 0.5 and were required to  satisfy |y| <  2.5. The input 
objects were all stable particles except the two electrons 
defining the dielectron system  and any photons in a cone 
of R  =  0.2 around the two electrons. The la tte r require
m ent excludes m ost photons associated w ith the Z / y* 
decays, described in the sim ulation as QED final-state 
radiation.

In the sim ulated sample, the  ra tio  of the  reconstructed 
p ^  spectrum  to  the  particle level spectrum  defines the  
p roduct of the  efficiency of the detector (esim) and its 
geom etrical acceptance (Asim ). The product (e x A) 
also includes the im pact of the  detector resolution on 
the reconstructed  spectrum . To achieve agreem ent be
tween (e x A )sim and the corresponding q uan tity  in data, 
(e x A )data, the sim ulated event sample was modified in 
two steps. F irst, the  sim ulated event sam ple was cor
rected so th a t its object identification efficiencies, energy 
scales, and energy resolutions correspond to  those mea
sured in data . Next, the shapes of the p J  spectra in the 
sim ulated sample were reweighted a t the  particle level 
so th a t agreem ent w ith d a ta  was obtained a t the recon
structed  level. These two steps are explained in more 
detail below.

The single electron identification efficiency was m ea
sured in d a ta  for inclusive Z /y * ( ^  e+ e- ) + X  events [19], 
giving an efficiency, including sta tistica l uncertainty, of 
edata =  0.77 ±  0.01. The electron identification efficiency 
in the sim ulated sample, eeim, was found to  be «  10%

higher th an  in data . To adjust the sim ulation to  cor
respond to  data , each reconstructed  electron candidate 
in the sim ulated sam ple was rejected w ith a probability  
given by edata/  eeim. The electron efficiencies were binned 
in ne and  >̂e. As a cross check, the analysis was also per
formed using electron efficiencies binned in ne and p T e, 
resulting in changes of less th an  1% in the final m easure
m ents. The same correction procedure was applied for 
the identification efficiency for jets, which was found to  
be eJde¡tta =  0.98 ±  0.02 in data .

The electron identification efficiency depends on the 
num ber of je ts  in an event and on their kinem atics. Elec
tro n  candidates w ith a nearby je t are less likely to  pass 
the electron identification criteria. To determ ine if the 
correlation between the electron efficiencies and the je t 
activ ity  is correctly described by the sim ulation, two sets 
of com parisons were perform ed. F irst, the  m inim al A R  
separation between each electron and all je ts  in N -jet 
events (N  =  0 ,1 , 2, 3) in the sim ulated sample were com
pared w ith data . Second, the am ount of soft QCD ra 
diation  not clustered into je ts  was studied using tracks 
which were not associated w ith any reconstructed  elec
tro n  or je t. The m ultiplicity and p T sum  of all such 
tracks in N -je t events (N  =  1, 2, 3), relative to  those in 0- 
je t events, were com pared between sim ulation and data . 
For bo th  sets of com parisons, reasonable agreem ent was 
found. The to ta l uncerta in ty  due to  differences between 
the sim ulation and the d a ta  in the dependence of the elec
tro n  identification efficiency on je t activ ity  was estim ated 
to  be below 2 % for all cross section m easurem ents.

Je t energy scale (JES) corrections were derived using 
Y +jet and dijet events, assuring th a t the reconstructed 
p f  in Y +jet events on average is equal to  the particle- 
level pJ^. The difference in calorim eter response between 
quark- and gluon-initiated je ts  introduces a dependence 
of the JES on the physics process. As a result, the  JES 
corrections derived using y + je t events do not guarantee a 
correct JE S  when applied to  Z /y * + je t events. However, 
the correction of d a ta  to  the  particle level depends only 
on d a ta  and sim ulation having a common JES. The factor 
(e x A) accounts for any differences between th is common 
JES and the correct JES since particle-level je ts  in the 
sim ulated sam ple by definition have the proper energy 
scale. The p T balance in Z /Y *+ jet events was used to 
ad just the JES in sim ulation to  be equal to  the JES in 
data . The correction is ~  5% below 40 GeV and becomes 
negligible above 80 GeV.

The je t energy resolution (JE R ) in d a ta  and sim ulated 
events was determ ined using Z /y * + je t events, and the 
reconstructed  je t energies in the sim ulated sample were 
corrected to  account for any differences. The JE R  dis
to rts  the steeply falling je t p T spectra, resulting in a net 
m igration tow ards higher values of pJ^. This leads to  
the reconstructed  pJ? spectra  being (5-15)%  higher th an  
they  would have been for a detector w ith perfect je t en
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ergy resolution. The factor (ex A) accounts for this effect, 
and the m easurem ents are fully corrected for the JER .

After adjusting the sim ulated detector perform ance to 
the real detector perform ance, we tuned  the p jTet spectra 
in the sim ulation to  those observed in data . For the  m ea
surem ent of each observable, the sim ulated event sam
ple was reweighted as a function of th a t observable at 
the particle level to  ensure agreem ent of the  d istribution  
of the observable a t the reconstructed  level. After the 
reweighting, (e x A )sim is equal to  (e x A )data w ithin the 
uncertainties of the  corrections applied to  the  sim ulated 
sample. The particle level spectra  in d a ta  equal the re
constructed  spectra  in d a ta  divided by (e x A )sim. The 
to ta l efficiency for reconstructing  a Z / y* ( ^  e+e- ) +  N - 
je ts + X  event varies w ith pJ^t and is in the range 0.5-0.7 
for N  = 1  and 0.4-0.5 for N  = 2 ,  3.

For events containing more th an  one je t, the  N th je t 
a t the particle level m ight not be equal to  the N th je t at 
the reconstructed  level. This can occur for events con
tain ing two je ts  w ith sim ilar values of pJ^t . The im pact 
of this effect is p a rt of ( e x A) as defined above, and 
it is correctly taken  into account if the JE R  is identi
cal for sim ulation and data , and if two je ts  have similar 
p ^  values equally often in sim ulation and in data . The 
former is assured by the JE R  corrections applied to  the 
sim ulated event sample, as described above. To test if 
the la tte r is satisfied, the ratios of the reconstructed  pT - 
spectrum  of the N th je t to  the  spectra of the (N  — 1)th 
je t and  the ( N  +  1) th je t in the sim ulated event sample 
was com pared w ith those observed in data . Agreement 
was observed w ithin sta tistical uncertainties.

The final m easurem ents are presented w ith two differ
ent particle-level selections in the m ass range 65 <  M ee < 
115 GeV: first w ithout any further selections on the elec
trons (selection a) and  secondly requiring p J  >  25 GeV 
and |ye | <  1.1 or 1.5 <  |ye | <  2.5 (selection b). For each 
particle-level electron selection, the  p jTet spectra  were nor
malized to  the  inclusive Z /y * ( ^  e+ e- ) +  X  cross section 
m easured w ith the  same particle-level selection. Selec
tion  b corresponds to  the kinem atic range which is m ea
sured in data . Selection a includes an ex trapolation  to  
the full range of lepton kinem atics in order to  simplify 
direct com parisons w ith o ther m easurem ents. The ex
trapo la tion  factor was derived from event samples gen
erated  using SHERPA v1.1.1, ALPGEN v2.13 +  PYTHIA 
v6.325 using Tune A and PYTHIA v6.323 using Tune A. 
The central value of the ex trapolation  factor was taken 
to  be the  SHERPA prediction, w ith the m axim al devia
tion  to  the two other predictions being assigned as a sys
tem atic uncertainty. The uncertainties due to  the PD Fs 
were evaluated using the Hessian m ethod [20] and were 
found to  be negligible. The ex trapolation  from selection 
b to  selection a increases the norm alized differential cross 
section for the leading je t by «  10% below 100 GeV and 
decreases it by «  25% above 200 GeV. For the second

(third) je t, the  ex trapolation  changes the observable by 
less th an  10% (2%).

T he system atic uncertainties of the  m easurem ents arise 
from the uncertainties of the background estim ates, 
which were found to  be negligible, and from the uncer
tain ties of the  corrections applied to  the  sim ulated event 
sample to  assure th a t (e x A )sim =  (e x A )data. Each 
correction was varied separately  w ithin its uncertainties, 
and the resulting variations in the m easured p jTet spec
tra  were added in quad ra tu re  to  give the to ta l system 
atic uncerta in ty  of the m easurem ents. The largest source 
of uncertain ty  is the  correction of the JES in the simu
lated  event sample to  correspond to  the JES of the  d a ta  
sample, contributing  (50-80)%  of the to ta l system atic 
uncerta in ty  of the  m easurem ents. A dditional uncertain
ties arise from the  reweighting function applied to  the 
sim ulated event sam ple a t the particle level to  ensure 
agreem ent w ith d a ta  a t the reconstructed  level, from the 
correction of the je t energy resolution and of the  je t and 
electron identification efficiencies in the sim ulated event 
sample, and from the ex trapolation  from selection b to  
selection a. Presenting the m easurem ents as ratios to  the 
inclusive Z / y* ( ^  e+ e- ) +  X  cross section cancels the  de
pendence on the uncertain ty  in the  in tegrated  lum inosity 
of the  d a ta  set. Additionally, m ost of the dependence on 
the uncertainties in the electron trigger and identification 
efficiencies also cancels.

T he choice of binning for the m easurem ents was guided 
by the finite JE R , which causes events to  contribute to  
different bins a t the particle and reconstruction  levels. 
The p u rity  of a bin is defined as the fraction of the sim
ulated  events which are reconstructed  in the  same bin 
in which they  were generated a t the  particle level. The 
w idths of the m easurem ent bins were chosen so th a t each 
bin has a purity  of about 60%.

T he m easurem ents presented above are com pared w ith 
the predictions of several different theoretical models. 
For each model, the  predicted je t pT spectra  are nor
malized to  the  predicted inclusive Z / y* ( ^  e+ e- ) +  X  
cross section. All predictions were generated using the 
C TEQ  6.1M [21] parto n  density  functions (PD Fs) and 
the two-loop formula for the evolution of the  strong cou
pling constant ( a s ). For the first and second je ts  the 
NLO MCFM predictions have been taken as the reference 
prediction; for the th ird  je t, the  leading-order (LO) MCFM 
prediction plays th is role. The m easurem ents and all the
oretical predictions are presented as ratios w ith respect 
to  the  reference prediction.

T he fully corrected m easurem ents are sum m arized in 
Tables I- I I I  and graphically represented in Figs. 1- 3 . 
The d a ta  points are shown w ith sta tistical uncertainties 
(inner uncertain ty  bars) as well as w ith sta tistica l and 
system atic uncertainties combined in quad ra tu re  (outer 
bars). Each d a ta  point is placed a t the pT value where 
the theoretical differential cross section is equal to  the 
average cross section w ithin the bin [22 ].
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TABLE I: The measurements of  ̂ x for the first jet (pr ordered) in Zj^*  (—► e+e ) events with one or more jets.

pT > 25 GeV, |ye| < 1.1 or 1.5 < |ye| < 2.5, 
65 < M ee <115 GeV 65 < Mee < 115 GeV

PT bin
[GeV]

Bin center 
[GeV]

1 / a Z/7* X da/dpT  
[1/GeV] '

$stat
(%)

$sys
(%)

1 /a Z/7* X da/dpT
[1/GeV] '

^stat
(%)

ŝys
(%)

20-28 23.7 6.81 X 10-3 1.6 5.9 7.19 X 10-3 1.6 7.0
28-40 33.5 2.99 X 10-3 2.1 4.0 3.22 X 10-3 2.1 4.6
40-54 46.4 1.23 X 10-3 3.1 3.3 1.37 X 10-3 3.1 3.9
54-73 62.7 5.04 X 10-4 4.0 3.3 5.74 X 10-4 4.0 4.1
73-95 83.1 2.03 X 10-4 5.6 7.6 2.27 X 10-4 5.6 8.2
95-120 106.2 7.29 X 10-5 8.4 8.4 7.62 X 10-5 8.4 8.9

120-154 135.3 2.64 X 10-5 12 10 2.54 X 10-5 12 11
154-200 172.9 8.08 X 10-6 17 14 6.99 X 10-6 17 14
200-300 236.9 7.46 X 10-7 42 25 5.58 X 10-7 42 25

TABLE II: The measurements of t x for the second jet (p r  ordered) in Z /r'j*{-^ e+e ) events with two or more jets.

pT > 25 GeV, |ye| < 1.1 or 1.5 < |ye| < 2.5, 
65 < Mee <115 GeV 65 < Mee < 115 GeV

pT bin
[GeV]

Bin center 
[GeV]

1 /a Z/7* X d a /d p T
[1/GeV]

^stat
(%)

$sys
(%)

1 /a Z/7* X d a /d p T  
[1/GeV]

^stat
(%)

&sys
(%)

20-28 23.6 1.30 X 10-3 3.7 10 1.39 X 10-3 3.7 11
28-40 33.3 4.23 X 10-4 5.7 5.2 4.51 X 10-4 5.7 6.0
40-54 46.2 1.57 X 10-4 9.1 6.2 1.62 X 10-4 9.1 6.8
54-73 62.3 4.17 X 10-5 15 8.5 4.20 X 10-5 15 9.0
73-200 112.9 2.96 X 10-6 22 7.4 2.82 X 10-6 22 8.0

TABLE III: The measurements of t x for the third jet (p r  ordered) in Z /Y *(^ e+e ) events with three or more jets.

pT > 25 GeV, |ye| < 1.1 or 1.5 < |ye| < 2.5, 
65 < Mee <115 GeV 65 < Mee < 115 GeV

pT bin
[GeV]

Bin center 
[GeV]

1 /a Z/7* X d a /d p T  
[1/GeV]

$stat
(%)

ŝys
(%)

1 /a Z/7* X d a /d p T  
[1/GeV]

$stat
(%)

ŝys
(%)

20-28 23.6 2.22 X 10-4 9.1 14 2.33 X 10-4 9.1 16
28-44 34.6 4.40 X 10-5 17 8.4 4.48 X 10-5 17 11
44-60 50.9 8.67 X 10-6 42 11 8.60 X 10-6 42 13

The first com parison was perform ed between d a ta  and 
the pQ CD  predictions from MCFM v5.3 a t NLO for the 
two leading je ts, and a t LO for the  three leading jets. The 
central predictions were defined using factorization and 

renorm alization scales ¿if  =  A*R =  \ J + P r z i  w ith 
M Z and p T denoting the m ass and transverse mom en
tu m  of the Z /y*  boson. The sensitivity of the predicted 
cross sections to  the choice of p,p and was tested  by 
varying their values up and down from the nom inal value 
by a factor of two. The MCFM predictions were m ultiplied 
by correction factors accounting for m ultiple parton  in
teractions (CMpi) and hadronization  (CHad ) before being 
com pared to  the  m easurem ents.

The correction factors CMPI and CHad were estim ated 
using inclusive Z / y* ( ^  e+ e- ) event samples generated

w ith PYTHIA v6.416 using Tune Q W  [23], PYTHIA v6.416 
using Tune SO [24], HERWIG v6.510 +  JIMMY v4.31 [25], 
ALPGEN v2.13 +  PYTHIA v6.325 using Tune QW , and 
SHERPA v1.1.1. The central values quoted in Tables IV - 
VI correspond to  the predictions of PYTHIA Tune QW. 
The m axim al upw ards and downwards differences be
tween PYTHIA Tune QW  and the o ther four models are 
quoted as system atic uncertainties.

B oth  the NLO and the LO MCFM predictions are in 
agreem ent w ith the m easurem ents w ithin the  experim en
ta l and theoretical uncertainties (Figs. 1- 3 ) . At NLO, 
varying the scales up (down) by a factor of two changes 
the norm alized p ^  spectrum  down (up) by factor of « 1.1 
for the leading je t, com pared to  a factor « 1 .2  for LO. 
For the  second je t, the factors are «1 .1  (NLO) and «1 .4  
(LO), and for the th ird  « 1 .6  (LO). These num bers illus-
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pT (1st jet) [GeV] pT (1st jet) [GeV]

FIG. 1: (a) The measured distribution of t x dp^ et) for the leading jet in Z/Y*+jet+A' events, compared to the predictions
of MCFM NLO. The ratios of data and theory predictions to MCFM NLO are shown (b) for pQCD predictions corrected to the 
particle level, (c) for three parton-shower event generator models, and (d) for two event generators matching matrix-elements 
to a parton shower. The scale uncertainties were evaluated by varying the factorization and renormalization scales by a factor 
of two.

TABLE IV: Correction factors for multiple parton interac- TABLE V: Correction factors for multiple parton interactions
tions (C'm pi) and hadronization (C'Had) for ■'Z/Y*

______ dl7______
' dpT( lBt jet.) '

Cmpi ±  (stat) ±  (sys) Cnad ±  (stat) ±  (sys)pT bin
[GeV]

20
28
40
54
73

28
40
54
73
95

95-120  
120-154 
154 -200 
200 -  300

1.08 ±  0 .
1.04 ±  0 
1.02 ±  0 
1.02 ±  0 
1.01 ±  0 
1.02 ±  0
1.04 ±  0 
1.03 ±  0 
1.01 ±  0

00+0.0700- 0.04 00+0.02 
00- 0.02 
0 0 + °.m  
00- 0.01 01+0.00
01- 0.02 01 +°.°3 
01- 0.01 
02+0.0002- 0.03 03+0.00
03- 0.07
05+0.02 05- 0.06 09+0.04 09- 0.05

0.89 ±  
0.90 ±  
0.90 ±  
0.92 ±  
0.93 ±  
0.91 ±  
0.92 ±  
0.91 ±  
0.92 ±

0 00+0.04 0.00-0.03 
0.00+0.03 0.00- 0.01 
0.00+0.02 0.00- 0.00 
0.01+0.01 0.01-0.03 
0.01+0.01 0.01- 0.02 
0.02+0.03 0.02- 0.00
0.02+0.05 

0. 03
0.04-00.0066
0.08-0.06

tra te  the  improved predictive power of the NLO com pu
ta tio n  as com pared w ith the LO one. The uncertainties 
of the  MCFM predictions due to  the PD Fs were evaluated 
using the Hessian m ethod. For the two leading je ts, they 
vary from 5% a t low p T to  10% a t high p T , and for the 
th ird  je t they  are found to  be (5-15)%.

Next, we com pare the predictions of PYTHIA v6.416

(CMPI) and hadronization (CHad) for da
’Z/y* dpT (2nd jet) '

Cmpi ±  (stat) ±  (sys) Cnad ±  (stat) ±  (sys)pT bin
[GeV]

20 -  28 1.15 ± 0 .01-0
28 -  40 1.10 ± 0 .01-00
40 -  54 1.07 ± 0 .02-00
54 -  73 1.04 ± 0.03+00
73 -2 0 0 1.05 ± 0.05-00

and HERWIG v6.510 +  JIMMY v4.31 w ith the m easure
m ents. These event generators describe je ts  th rough a 
parto n  shower using the approxim ation th a t parto n  emis
sions are soft or collinear. For the hard  qq ^  Z /y* 
scattering, bo th  generators use =  M Z . For the 
parto n  shower, theoretical argum ents favor the  choice 

=  a x p ^ 1, w ith being the relative transverse 
m om entum  between the daughter partons in each 1 ^  2 
parto n  splitting  [26]. This choice of is adopted  in both  
HERWIG and  PYTHIA, w ith a = 1 .0  being used in HERWIG

1 1 x
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Data
HERWIG+JIMMY

Pt (2 jet) [GeV]

PYTHIA S0 
Scale unc. 
PYTHIA QW 
Scale unc.

2  05

200 
jet) [GeV]

FIG. 2: (a) The measured distribution of t x dp^ et) for the second jet in Z j 7 * +  2 jets+A' events, compared to the
predictions of MCFM NLO. The ratios of data and theory predictions to MCFM NLO are shown (b) for pQCD predictions 
corrected to the particle level, (c) for three parton-shower event generator models, and (d) for two event generators matching 
matrix-elements to a parton shower. The scale uncertainties were evaluated by varying the factorization and renormalization 
scales by a factor of two.

TABLE VI: Correction factors for multiple parton interac
tions (Cm pi) and hadronization (CHad) for a Z /7 * dpT ( 3rd jet.) ’

bin
[GeV]

Cmpi ±  (stat) ±  (sys) CHad ±  (stat) ±  (sys)

20 -  28 
28 -  44 
44 -  60

1.15 ±  0.02Í0-07
1.10 ±  0.03-00 : 0074
1.11 ±  O .lO t^o

0.76 ±  0.01Í0'00 
0.81 ±  0.03-00 . 00 
0.74 ±  0.07-00. 00

and in the final-state shower of PYTHIA. For the initial- 
s ta te  shower, PYTHIA using Tune QW  (Tune SO) sets 
a = \ /0 2  (1.0). B oth  HERWIG and PYTHIA reweight the 
leading parton  shower emission to  reproduce Z /Y *+jet 
LO m atrix-elem ent com putations [27]. For the leading 
je t, PYTHIA using Tune Q W  shows a more steeply falling 
spectrum  th a n  observed in d a ta  (Fig. 1). The predic
tion  of HERWIG +  JIMMY shows good agreem ent w ith 
d a ta  a t low j * ,  bu t resembles PYTHIA Tune QW  at high 
j * . The change of slope around j *  =  50 GeV can be 
traced  back to  the m atrix-elem ent correction algorithm  
in HERWIG [28]. Com parisons to  the m easurem ents of the

sub-leading je ts  (Figs. 2-3 ) show th a t PYTHIA using Tune 
Q W  and HERWIG predict more steeply falling j *  spec
tra  th an  observed in data , in agreem ent w ith expecta
tions based on the lim ited validity of the soft/collinear 
approxim ation of the parton  shower. A newer PYTHIA 
model w ith a -ordered parto n  shower, using Tune S0, 
gives a good description of the  leading je t, bu t shows no 
im provem ent for the second or th ird  je t. For the two 
PYTHIA models, samples were generated w ith and 
being varied up and down from the nom inal value by a 
factor of two. As expected, decreasing and  in
creases the predicted am ount of events w ith one or more 
jets. The slopes of the predicted d istributions do not 
change significantly as the  scales are varied.

Finally, we show com parisons w ith the ALPGEN v2.13 
+  PYTHIA v6.325 and SHERPA v1.1.1 event generators. 
B oth  generators combine tree-level m atrix  elements w ith 
parto n  showers [29, 30, 31], thereby  utilizing m atrix  
elements also for sub-leading jets. For the central 
ALPGEN+PYTHIA prediction, the factorization scale is 
given by ytip  = z , whereas the renorm aliza
tion  scale is defined individually for each parto n  splitting
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FIG. 3: (a) The measured distribution of t x dp^ et) for the third jet in Z j 7 * +3 jets+A' events, compared to the predictions
of MCFM LO. The ratios of data and theory predictions to MCFM NLO are shown (b) for pQCD predictions corrected to the 
particle level, (c) for three parton-shower event generator models, and (d) for two event generators matching matrix-elements 
to a parton shower. The scale uncertainties were evaluated by varying the factorization and renormalization scales by a factor 
of two.

using the CK K W  prescription [29]. For SHERPA, both  
the factorization and the renorm alization scales are given 
by the C K K W  prescription. For all three j *  spectra, 
ALPGEN+PYTHIA predicts lower production  rates than  
observed in data , bu t the shapes of the spectra  are well 
described. SHERPA predicts a less steeply falling lead
ing j *  spectrum  th a n  seen in data , leading to  disagree
m ents above 40 GeV. For the sub-leading j *  spectra, 
SHERPA predicts higher production ra tes th an  observed 
in data , bu t the  shapes are well described. In agree
m ent w ith Ref. [30], bo th  ALPGEN+PYTHIA and  SHERPA 
are found to  show a sensitivity  to  the choice of scales 
which is sim ilar to  th a t of a LO pQCD prediction, re
flecting a lim ited predictive power. For the  leading je t 
a t p T =  100 GeV, the prediction of SHERPA w ith both  
scales shifted down by a factor of two is about three tim es 
higher th an  the ALPGEN+PYTHIA prediction w ith both  
scales shifted up. This reflects b o th  the size of the  scale 
uncertainties and the difference in the central prediction 
between the two event generators. For ALPGEN+PYTHIA, 
good and sim ultaneous agreem ent w ith d a ta  for all three 
leading je ts  is achieved through scaling and down

by a factor of two from the default values. For SHERPA, 
an im proved description of d a ta  is achieved by scaling 
and up  by factor of two, bu t rem aining disagreem ents 
w ith the m easurem ents are seen for the leading je t below 
^  40 GeV.

In sum m ary, we have presented new m easurem ents 
of differential cross sections for Z / y* ( ^  e+ e- )+ je ts+ X  
production  in pp collisions a t a center-of-mass energy of 
1.96 TeV using a d a ta  sam ple recorded by the D0 de
tecto r corresponding to  1.04 ±  0.06 fb- 1 . The m easure
m ents are binned in the p T of the N*h je t, using events 
containing a t least N  =  1, 2, or 3 jets, and are nor
malized to  the  m easured inclusive Z / y* ( ^  e+ e- ) +  X  
cross section. P redictions of MCFM a t NLO, corrected 
to  the particle level, are found to  be in good agree
m ent w ith d a ta  and have a significantly sm aller scale 
uncerta in ty  th an  MCFM at LO. The parton-show er based 
HERWIG and PYTHIA Tune Q W  event generator models 
show significant disagreem ents w ith d a ta  which increase 
w ith p i^  and the num ber of je ts  in events. The newer 
p T-ordered shower model in PYTHIA gives a good descrip
tion  of the leading je t, bu t shows no im provem ent over



11

the  old model for the  sub-leading je ts. The SHERPA and 
ALPGEN+PYTHIA generators show an improved descrip
tion  of d a ta  as com pared w ith the parton-show er-based 
generators. ALPGEN+PYTHIA gives a good description 
of the shapes of the p i^  spectra, while predicting lower 
production ra tes th an  observed in data . SHERPA pre
dicts higher production  ra tes and a less steeply falling 
p i^  spectrum  for the leading je t th an  observed in data . 
For ALPGEN+PYTHIA, the factorization and renorm aliza
tion  scales can be chosen so th a t a good, sim ultaneous 
agreem ent w ith d a ta  is achieved for all three leading jets. 
For SHERPA, a sim ilar level of agreem ent is achieved for 
the sub-leading jets, bu t some disagreem ents rem ain for 
the shape of the  leading p^f spectrum . Since the pre
sented m easurem ents are fully corrected for instrum ental 
effects, they  can be used for testing and tuning of present 
and future event generator models.
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