34 research outputs found

    Cloud detecting nephelometer for the Pioneer-Venus probes

    Get PDF
    Design specifications of a cloud detecting nephelometer for the Pioneer-Venus probe are given. The instrument is designed to measure the presence of clouds, their vertical structure or extent, and from the multiple probe data, provide some guides as to the global variability of the cloud structure. Specifications for the instrument include the ability to operate in the near ultraviolet, visible, and near infrared wavelengths, monitor optical quality of windows and temperatures of critical components, operate at altitudes of less than or equal to 300 m

    High resolution imaging of the Venus night side using a Rockwell 128x128 HgCdTe array

    Get PDF
    The University of Hawaii operates an infrared camera with a 128x128 HgCdTe detector array on loan from JPL's High Resolution Imaging Spectrometer (HIRIS) project. The characteristics of this camera system are discussed. The infrared camera was used to obtain images of the night side of Venus prior to and after inferior conjunction in 1988. The images confirm Allen and Crawford's (1984) discovery of bright features on the dark hemisphere of Venus visible in the H and K bands. Our images of these features are the best obtained to date. Researchers derive a pseudo rotation period of 6.5 days for these features and 1.74 microns brightness temperatures between 425 K and 480 K. The features are produced by nonuniform absorption in the middle cloud layer (47 to 57 Km altitude) of thermal radiation from the lower Venus atmosphere (20 to 30 Km altitude). A more detailed analysis of the data is in progress

    Laser-generated plasma as a spectroscopic light source

    Get PDF
    Laser generated plasma as spectroscopic light sourc

    Holographic instrumentation applications

    Get PDF
    Investigating possibilities and limitations of applying holographic techniques to aerospace technolog

    Pioneer Venus 12.5 km Anomaly Workshop Report, volume 1

    Get PDF
    A workshop was convened at Ames Research Center on September 28 and 29, 1993, to address the unexplained electrical anomalies experienced in December 1978 by the four Pioneer Venus probes below a Venus altitude of 12.5 km. These anomalies caused the loss of valuable data in the deep atmosphere, and, if their cause were to remain unexplained, could reoccur on future Venus missions. The workshop participants reviewed the evidence and studied all identified mechanisms that could consistently account for all observed anomalies. Both hardware problems and atmospheric interactions were considered. Based on a workshop recommendation, subsequent testing identified the cause as being an insulation failure of the external harness. All anomalous events are now explained

    Implications of Preliminary VEGA Balloon Results for the Venus Atmosphere Dynamics

    Get PDF
    The typical 1-2 m/sec vertical winds encountered by the Vega balloons probably result from thermal convection. The consistent 6.5-kelvin differential between the Vega 1 and Vega 2 temperatures is attributable to disturbances of synoptic or planetary scale. According to the Doppler tracking the winds were stronger than on earlier missions, perhaps because of solar thermal tides. The motions of Vega 2 may have been affected by waves from mountainous terrain

    Thermal structure in the Venus middle cloud layer

    Get PDF
    Thermal structure measurements obtained by the two Vega balloons show the Venus atmosphere in the middle cloud layer to be near-adiabatic, on the whole; but discrete air masses are present that differ slightly from one another in potential temperature and entropy. The Vega 1 temperatures are 6.5 K warmer than measured by Vega 2 at given pressures. Measurements taken by the Vega 2 lander on descent through these levels agree with the Vega 2 balloon data

    Meteorological Data Along the VEGA-1 and VEGA-2 Float Paths

    Get PDF
    During their flight through the Venus atmosphere the Vega 1 and Vega 2 balloon craft measured the pressure and temperature of the ambient medium, the vertical wind-velocity component (relative to the gondola), the cloud-layer backscatter coefficient, the mean illumination level, and the number and time of possible lightning flashes. In addition, the ground radio telescope network measured the balloon positions and drift velocities by the differential VLBI technique; these data are now being processed

    Coupled Clouds and Chemistry of the Giant Planets— A Case for Multiprobes

    Full text link
    In seeking to understand the formation of the giant planets and the origin of their atmospheres, the heavy element abundance in well-mixed atmosphere is key. However, clouds come in the way. Thus, composition and condensation are intimately intertwined with the mystery of planetary formation and atmospheric origin. Clouds also provide important clues to dynamical processes in the atmosphere. In this chapter we discuss the thermochemical processes that determine the composition, structure, and characteristics of the Jovian clouds. We also discuss the significance of clouds in the big picture of the formation of giant planets and their atmospheres. We recommend multiprobes at all four giant planets in order to break new ground.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43766/1/11214_2005_Article_1951.pd

    Scientific rationale for Uranus and Neptune <i>in situ</i> explorations

    Get PDF
    The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ∼70% heavy elements surrounded by a more dilute outer envelope of H2 and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranus's and Neptune's physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission
    corecore