386 research outputs found

    Do we miss the hot spots? ? The use of very high resolution aerial photographs to quantify carbon fluxes in peatlands

    Get PDF
    International audienceAccurate determination of carbon balances in heterogeneous ecosystems often requires the extrapolation of point based measurements. The ground resolution (pixel size) of the extrapolation base, e.g. a land-cover map, might thus influence the calculated carbon balance, in particular if biogeochemical hot spots are small in size. In this paper, we test the effects of varying ground resolution on the calculated carbon balance of a boreal peatland consisting of hummocks (dry), lawns (intermediate) and flarks (wet surfaces). The generalizations in lower resolution imagery led to biased area estimates for individual micro-site types. While areas of lawns and hummocks were stable below a threshold resolution of ~60 cm, the maximum of the flark area was located at resolutions below 25 cm and was then decreasing with coarsening resolution. Using a resolution of 100 cm instead of 6 cm led to an overestimation of total CO2 uptake of the studied peatland area (approximately 14 600 m2) of ~6% and an underestimation of total CH4 emission of ~11%. To accurately determine the surface area of scattered and small-sized micro-site types in heterogeneous ecosystems (e.g. flarks in peatlands), a minimum ground resolution appears necessary. In our case this leads to a recommended resolution of 25 cm, which can be derived by conventional airborne imagery. The usage of high resolution imagery from commercial satellites, e.g. Quickbird, however, is likely to underestimate the surface area of biogeochemical hot spots. It is important to note that the observed resolution effect on the carbon balance estimates can be much stronger for other ecosystems than for the investigated peatland where the relative hot spot area of the flarks is very small and their hot spot characteristics with respect to CH4 and CO2 fluxes is rather modest

    Bulk partitioning the growing season net ecosystem exchange of CO<sub>2</sub> in Siberian tundra reveals the seasonality of its carbon sequestration strength

    Get PDF
    This paper evaluates the relative contribution of light and temperature on net ecosystem CO2 uptake during the 2006 growing season in a polygonal tundra ecosystem in the Lena River Delta in Northern Siberia (72°22´ N, 126°30´ E). The occurrence and frequency of warm periods may be an important determinant of the magnitude of the ecosystem's carbon sink function, as they drive temperature-induced changes in respiration. Hot spells during the early portion of the growing season, when the photosynthetic apparatus of vascular plants is not fully developed, are shown to be more influential in creating positive mid-day surface-to-atmosphere net ecosystem CO2 exchange fluxes than those occurring later in the season. In this work we also develop and present a multi-step bulk flux partition model to better account for tundra plant physiology and the specific light conditions of the arctic region. These conditions preclude the successful use of traditional partition methods that derive a respiration–temperature relationship from all nighttime data or from other bulk approaches that are insensitive to temperature or light stress. Nighttime growing season measurements are rare during the arctic summer, however, so the new method allows for temporal variation in the parameters describing both ecosystem respiration and gross uptake by fitting both processes at the same time. Much of the apparent temperature sensitivity of respiration seen in the traditional partition method is revealed in the new method to reflect seasonal changes in basal respiration rates. Understanding and quantifying the flux partition is an essential precursor to describing links between assimilation and respiration at different timescales, as it allows a more confident evaluation of measured net exchange over a broader range of environmental conditions. The growing season CO2 sink estimated by this study is similar to those reported previously for this site, and is substantial enough to withstand the long, low-level respiratory CO2 release during the rest of the year to maintain the site's CO2 sink function on an annual basis

    Modeling the ENSO impact of orbitally induced mean state climate changes

    Get PDF
    The sensitivity of the El Niño–Southern Oscillation (ENSO) phenomenon to changes in the tropical Pacific mean climate is investigated with a coupled atmosphere-ocean-sea ice general circulation model (AOGCM), the Kiel Climate Model (KCM). Different mean climate states are generated by changing the orbital forcing that causes a redistribution of solar energy, which was a major driver of both the Holocene and the Eemian climates. We find that the ENSO amplitude is positively correlated with both the Equatorial Pacific sea surface temperature (SST) and the equatorial zonal SST contrast. The latter is controlled by the upwelling-induced damping of the SST changes in the Eastern Equatorial Pacific (EEP), and by the vertical ocean dynamical heating and zonal heat transport convergence in the Western Equatorial Pacific. The ENSO amplitude also correlates positively with the seasonal SST amplitude in the EEP and negatively with the strength of the easterly Trades over the Equatorial Pacific. However, the ENSO period is rather stable and stays within 3–4 years. Enhanced ENSO amplitude is simulated during the late-Holocene, in agreement with paleoproxy records. The tight positive correlation (r = 0.89) between the ENSO strength and the Western Pacific Warm Pool (WPWP) SST suggests that the latter may provide an indirect measure of the ENSO amplitude from proxy data that cannot explicitly resolve interannual variability. Key Points: - ENSO amplitude enhances as mean SST & west-east SST gradient rise in tropical Pacific - The broad range frequency peaks at periods of 3-4 years over Holocene and Eemian - The Pacific's warm pool SST is a suitable indicator to monitor ENSO variabilit

    Meridional shifts of the Atlantic intertropical convergence zone since the Last Glacial Maximum

    Get PDF
    The intertropical convergence zone is a near-equatorial band of intense rainfall and convection. Over the modern Atlantic Ocean, its annual average position is approximately 5° N, and it is associated with low sea surface salinity and high surface temperatures. This average position has varied since the Last Glacial Maximum, in response to changing climate boundary conditions. The nature of this variation is less clear, with suggestions that the intertropical convergence zone migrated north–south away from the colder hemisphere or that it contracted and expanded symmetrically around its present position2. Here we use paired Mg/Ca and δ18O measurements of planktonic foraminifera for a transect of ocean sediment cores to reconstruct past changes in tropical surface ocean temperature and salinity in the Atlantic Ocean over the past 25,000 years. We show that the low-salinity, high-temperature surface waters associated with the intertropical convergence zone migrated southward of their present position during the Last Glacial Maximum, when the Northern Hemisphere cooled, and northward during the warmer early Holocene, by about ±7° of latitude. Our evidence suggests that the intertropical convergence zone moved latitudinally over the ocean, rather than expanding or contracting. We conclude that the marine intertropical convergence zone has migrated significantly away from its present position owing to external climate forcing during the past 25,000 years

    Multi vegetation model evaluation of the Green Sahara climate regime

    Get PDF
    During the Quaternary, the Sahara desert was periodically colonized by vegetation, likely because of orbitally induced rainfall increases. However, the estimated hydrological change is not reproduced in climate model simulations, undermining confidence in projections of future rainfall. We evaluated the relationship between the qualitative information on past vegetation coverage and climate for the mid-Holocene using three different dynamic vegetation models. Compared with two available vegetation reconstructions, the models require 500–800 mm of rainfall over 20°–25°N, which is significantly larger than inferred from pollen but largely in agreement with more recent leaf wax biomarker reconstructions. The magnitude of the response also suggests that required rainfall regime of the early to middle Holocene is far from being correctly represented in general circulation models. However, intermodel differences related to moisture stress parameterizations, biases in simulated present-day vegetation, and uncertainties about paleosoil distributions introduce uncertainties, and these are also relevant to Earth system model simulations of African humid periods

    Glacial to Holocene swings of the Australian–Indonesian monsoon

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 4 (2011): 540–544, doi:10.1038/ngeo1209.The Australian-Indonesian monsoon is an important component of the climate system in the tropical Indo-Pacific region. However, its past variability, relation with northern and southern high latitude climate and connection to the other Asian monsoon systems are poorly understood. Here we present high-resolution records of monsoon-controlled austral winter upwelling during the past 22,000 years, based on planktic foraminiferal oxygen isotope and faunal composition in a sedimentary archive collected offshore southern Java. We show that glacial-interglacial variations in the Australian-Indonesian winter monsoon were in phase with the Indian summer monsoon system, consistent with their modern linkage through cross-equatorial surface winds. Likewise, millennial-scale variability of upwelling shares similar sign and timing with upwelling variability in the Arabian Sea. On the basis of element composition and grain-size distribution as precipitation-sensitive proxies in the same archive, we infer that (austral) summer monsoon rainfall was highest during the Bølling-Allerød period and the past 2,500 years. Our results indicate drier conditions during Heinrich Stadial 1 due to a southward shift of summer rainfall and a relatively weak Hadley Cell south of the Equator. We suggest that the Australian-Indonesian summer and winter monsoon variability were closely linked to summer insolation and abrupt climate changes in the northern hemisphere.This study was funded by the German Bundesministerium für Bildung und Forschung (PABESIA) and the Deutsche Forschungsgemeinschaft (DFG, HE 3412/15-1). DWO’s participation was funded by the U.S. National Science Foundation

    End of Green Sahara amplified mid- to late Holocene megadroughts in mainland Southeast Asia

    Get PDF
    Between 5 and 4 thousand years ago, crippling megadroughts led to the disruption of ancient civilizations across parts of Africa and Asia, yet the extent of these climate extremes in mainland Southeast Asia (MSEA) has never been defined. This is despite archeological evidence showing a shift in human settlement patterns across the region during this period. We report evidence from stalagmite climate records indicating a major decrease of monsoon rainfall in MSEA during the mid- to late Holocene, coincident with African monsoon failure during the end of the Green Sahara. Through a set of modeling experiments, we show that reduced vegetation and increased dust loads during the Green Sahara termination shifted the Walker circulation eastward and cooled the Indian Ocean, causing a reduction in monsoon rainfall in MSEA. Our results indicate that vegetation-dust climate feedbacks from Sahara drying may have been the catalyst for societal shifts in MSEA via ocean-atmospheric teleconnections

    ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales

    Get PDF
    Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5 degrees grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (V-cmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r(2) = 0.76; Nash-Sutcliffe modeling efficiency, MEF = 0.76) and ecosystem respiration (ER, r(2) = 0.78, MEF = 0.75), with lesser accuracy for latent heat fluxes (LE, r(2) = 0.42, MEF = 0.14) and and net ecosystem CO2 exchange (NEE, r(2) = 0.38, MEF = 0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r(2) values (0.57-0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r(2) values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r(2) <0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized V-cmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average V-cmax value.Peer reviewe
    corecore