191 research outputs found

    Clarithromycin-induced rhabdomyolysis: a case report

    Get PDF
    Rhabdomyolysis is a clinical and laboratory syndrome that is caused by various etiologies, involving the skeletal muscle. Clarithromycin, like other macrolides, is an inhibitor of CYP450 3A4, the major enzyme responsible for the metabolism of several drugs, in particular some statins. Rhabdomyolysis related to macrolide–statin interaction has previously been described. To date, rhabdomyolysis induced by clarithromycin has been described in only one previous report. We describe the case of a 90-year-old Caucasian male, admitted to the University Hospital of Pisa for dyspnea, who developed rhabdomyolysis associated with clarithromycin administration

    Potential drug–drug interactions in alzheimer patients with behavioral symptoms

    Get PDF
    The use of multi drug regimens among the elderly population has increased tremendously over the last decade although the benefits of medications are always accompanied by potential harm, even when prescribed at recommended doses. The elderly populations are particularly at an increased risk of adverse drug reactions considering comorbidity, poly-therapy, physiological changes affecting the pharmacokinetics and pharmacodynamics of many drugs and, in some cases, poor compliance due to cognitive impairment and/or depression. In this setting, drug-drug interaction may represent a serious and even life-threatening clinical condition. Moreover, the inability to distinguish drug-induced symptoms from a definitive medical diagnosis often results in addition of yet another drug to treat the symptoms, which in turn increases drug-drug interactions. Cognitive enhancers, including acetylcholinesterase inhibitors and memantine, are the most widely prescribed agents for Alzheimer's disease (AD) patients. Behavioral and psychological symptoms of dementia, including psychotic symptoms and behavioral disorders, represent noncognitive disturbances frequently observed in AD patients. Antipsychotic drugs are at high risk of adverse events, even at modest doses, and may interfere with the progression of cognitive impairment and interact with several drugs including anti-arrhythmics and acetylcholinesterase inhibitors. Other medications often used in AD patients are represented by anxiolytic, like benzodiazepine, or antidepressant agents. These agents also might interfere with other concomitant drugs through both pharmacokinetic and pharmacodynamic mechanisms. In this review we focus on the most frequent drug-drug interactions, potentially harmful, in AD patients with behavioral symptoms considering both physiological and pathological changes in AD patients, and potential pharmacodynamic/pharmacokinetic drug interaction mechanisms

    Quantum nanophotonics in two-dimensional materials

    Get PDF
    The field of two-dimensional (2D) materials-based nanophotonics has been growing at a rapid pace, triggered by the ability to design nanophotonic systems with in situ control, unprecedented number of degrees of freedom, and to build material heterostructures from the bottom up with atomic precision. A wide palette of polaritonic classes have been identified, comprising ultraconfined optical fields, even approaching characteristic length-scales of a single atom. These advances have been a real boost for the emerging field of quantum nanophotonics, where the quantum mechanical nature of the electrons and polaritons and their interactions become relevant. Examples include quantum nonlocal effects, ultrastrong light–matter interactions, Cherenkov radiation, access to forbidden transitions, hydrodynamic effects, single-plasmon nonlinearities, polaritonic quantization, topological effects, and so on. In addition to these intrinsic quantum nanophotonic phenomena, 2D material systems can also be used as sensitive probes for the quantum properties of the material that carries the nanophotonics modes or quantum materials in its vicinity. Here, polaritons act as a probe for otherwise invisible excitations, for example, in superconductors, or as a new tool to monitor the existence of Berry curvature in topological materials and superlattice effects in twisted 2D materials. In this Perspective, we present an overview of the emergent field of 2D-material quantum nanophotonics and provide a future perspective on the prospects of both fundamental emergent phenomena and emergent quantum technologies, such as quantum sensing, single-photon sources, and quantum emitters manipulation. We address four main implications: (i) quantum sensing, featuring polaritons to probe superconductivity and explore new electronic transport hydrodynamic behaviors, (ii) quantum technologies harnessing single-photon generation, manipulation, and detection using 2D materials, (iii) polariton engineering with quantum materials enabled by twist angle and stacking order control in van der Waals heterostructures, and (iv) extreme light−matter interactions enabled by the strong confinement of light at atomic level by 2D materials, which provide new tools to manipulate light fields at the nanoscale (e.g., quantum chemistry, nonlocal effects, high Purcell enhancement).H.L.K. acknowledges support from the Government of Spain (FIS2017-91599-EXP; Severo Ochoa CEX2019-000910-S), Fundacio ' Cellex, Fundacio ' Mir-Puig, and Generalitat de Catalunya (CERCA, AGAUR, SGR 1656). Furthermore, the research leading to these results has received funding from the European Union's Horizon 2020 under Grant Agreements 785219 (Graphene flagship Core2), 881603 (Graphene flagship Core3), and 820378 (Quantum flagship). This work was also supported by the ERC TOPONANOP under Grant Agreement No. 726001. I.T. acknowledges funding from the Spanish Ministry of Science, Innovation and Universities (MCIU) and State Research Agency (AEI) via the Juan de la Cierva Fellowship No. FJC2018-037098-I. F.H.L. K. and A.R.-P. acknowledge BIST Ignite Programme Grant from the Barcelona Institute of Science and Technology (QEE2DUP). N.M.R.P. acknowledges support from the European Commission through the project "Graphene-Driven Revolutions in ICT and Beyond" (ref. No. 881603, CORE 3), COMPETE 2020, PORTUGAL 2020, FEDER, and the Portuguese Foundation for Science and Technology (FCT) through Project POCI-01-0145-FEDER028114, and the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Financing UID/FIS/04650/2019. N.A.M. is a VILLUM Investigator supported by VILLUM FONDEN (Grant No. 16498) and Independent Research Fund Denmark (Grant No. 702600117B). The Center for Nano Optics is financially supported by the University of Southern Denmark (SDU 2020 funding). The Center for Nanostructured Graphene (CNG) is sponsored by the Danish National Research Foundation (Project No. DNRF103). J.C.W.S. acknowledges support from the National Research Foundation (NRF) Singapore under its NRF fellowship programme Award No. NRF-NRFF2016-05 and the Ministry of Education (MOE) Singapore under its MOE AcRF Tier 3 Award MOE2018-T3-1-002

    LIPSS Applied to Wide Bandgap Semiconductors and Dielectrics: Assessment and Future Perspectives

    Get PDF
    With the aim of presenting the processes governing the Laser-Induced Periodic Surface Structures (LIPSS), its main theoretical models have been reported. More emphasis is given to those suitable for clarifying the experimental structures observed on the surface of wide bandgap semiconductors (WBS) and dielectric materials. The role played by radiation surface electromagnetic waves as well as Surface Plasmon Polaritons in determining both Low and High Spatial Frequency LIPSS is briefly discussed, together with some experimental evidence. Non-conventional techniques for LIPSS formation are concisely introduced to point out the high technical possibility of enhancing the homogeneity of surface structures as well as tuning the electronic properties driven by point defects induced in WBS. Among these, double- or multiple-fs-pulse irradiations are shown to be suitable for providing further insight into the LIPSS process together with fine control on the formed surface structures. Modifications occurring by LIPSS on surfaces of WBS and dielectrics display high potentialities for their cross-cutting technological features and wide applications in which the main surface and electronic properties can be engineered. By these assessments, the employment of such nanostructured materials in innovative devices could be envisaged

    Overt and Subclinical Hypothyroidism in the Elderly: When to Treat?

    Get PDF
    Hypothyroidism is characterized by increased thyrotropin (TSH) levels and reduced free thyroid hormone fractions while, subclinical hypothyroidism (sHT) by elevated serum TSH in the face of normal thyroid hormones. The high frequency of hypothyroidism among the general population in Western Countries made levothyroxine (LT4) one of the 10 most prescribed drugs. However, circulating TSH has been demonstrated to increase with aging, regardless the existence of an actual thyroid disease. Thus, when confronting an increase in circulating TSH levels in the elderly, especially in the oldest old, it is important to carry an appropriate diagnostic path, comprehensive of clinical picture as well as laboratory and imaging techniques. In the current review, we summarize the recommendations for a correct diagnostic workup and therapeutic approach to older people with elevated TSH value, with special attention to the presence of frailty, comorbidities, and poly-therapy. The treatment of choice for hypothyroid patients is hormone replacement with LT4 but, it is important to consider multiple factors before commencing the therapy, from the age dependent TSH increase to the presence of an actual thyroid disease and comorbidities. When treatment is necessary, a tailored therapy should be chosen, considering poly-pharmacy and frailty. A careful follow-up and treatment re-assessment should be always considered to avoid the risk of over-treatment. It is important to stress the need of educating the patient for a correct administration of LT4, particularly when poly-therapy is in place, and the importance of a tailored therapeutic approach and follow-up, to avoid overtreatment

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon Ό\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, ΌΌ\mu\mu or eΌe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction
    • 

    corecore