14 research outputs found

    Variability of non-clinical behavioral CNS safety assessment: An intercompany comparison

    No full text
    Introduction: Irwin/FOB testing is routinely conducted to investigate the neurofunctional integrity of laboratory animals during preclinical development of new drugs, however, the study design frequently varies to meet specific needs. Representatives of several European-based pharmaceutical companies performed a “state-of-the-art” assessment of how they conduct their CNS safety evaluation using Irwin/FOB tests. Methods: This assessment consisted of (1) a survey of current/historical practice, (2) an evaluation of historical studies with reference compounds (amphetamine, chlorpromazine) to determine intercompany reproducibility of results, and (3) an interlaboratory test using reference compounds (MK-801, chlorpromazine) to determine whether partially standardized conditions (animals, sex, doses, vehicles, administration route, observation time points, systemic exposure) might reduce variability of results. Results: Our survey revealed several similarities, e.g., main endpoints of home cage and openfield observations, species, and positive control substances, but also a high level of heterogeneity between different companies with regard to behavioral endpoints during handling and reflex testing, scoring, group size, and timing of studies. Analysis of heterogeneously designed historical studies with amphetamine and chlorpromazine showed the anticipated behavioral changes, albeit with quantitative variability, and identified more robust (e.g., activity, posture, muscle tone, startle reflex, body temperature) and less robust (piloerection, stereotypical behavior, palpebral closure, respiration) Irwin/FOB parameters. A partially standardized interlaboratory test with MK-801 and chlorpromazine showed the expected behavioral changes and principally confirmed the historically-based more/less robust Irwin/FOB parameters, however, it also showed exposure variability and did not show a markedly reduced quantitative variability of behavioral results. Discussion: Our survey and intercompany test results demonstrate certain heterogeneity in design and conduct of Irwin/FOB tests by pharmaceutical companies. Although the general behavioral profiles for the reference compounds were consistently found, quantitative variability of results remained even under partially standardized conditions. This suggests the importance of a high level of standardization with regard to the Irwin/FOB test modification used, scoring system, and observer training, in order to achieve an improved intercompany comparability of Irwin/FOB results

    Paradoxes of Belonging in Peru's National Museums

    No full text

    Association of Genomic Domains in BRCA1 and BRCA2 with Prostate Cancer Risk and Aggressiveness

    No full text
    Pathogenic sequence variants (PSV) in BRCA1 or BRCA2 (BRCA1/2) are associated with increased risk and severity of prostate cancer. We evaluated whether PSVs in BRCA1/2 were associated with risk of overall prostate cancer or high grade (Gleason 8þ) prostate cancer using an international sample of 65 BRCA1 and 171 BRCA2 male PSV carriers with prostate cancer, and 3,388 BRCA1 and 2,880 BRCA2 male PSV carriers without prostate cancer. PSVs in the 3 0 region of BRCA2 (c.7914þ) were significantly associated with elevated risk of prostate cancer compared with reference bin c.1001c.7913 [HR ¼ 1.78; 95% confidence interval (CI), 1.25–2.52; P ¼ 0.001], as well as elevated risk of Gleason 8þ prostate cancer (HR ¼ 3.11; 95% CI, 1.63–5.95; P ¼ 0.001). c.756-c.1000 was also associated with elevated prostate cancer risk (HR ¼ 2.83; 95% CI, 1.71–4.68; P ¼ 0.00004) and elevated risk of Gleason 8þ prostate cancer (HR ¼ 4.95; 95% CI, 2.12–11.54; P ¼ 0.0002). No genotype–phenotype associations were detected for PSVs in BRCA1. These results demonstrate that specific BRCA2 PSVs may be associated with elevated risk of developing aggressive prostate cancer

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    [The effect of low-dose hydrocortisone on requirement of norepinephrine and lactate clearance in patients with refractory septic shock].

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore