86 research outputs found

    Excited state dynamics of bis-dehydroxycurcumin tert-butyl ester, a diketo-shifted derivative of the photosensitizer curcumin

    Get PDF
    Bis-dehydroxycurcumin tert-butyl ester (K2T23) is a derivative of the natural spice curcumin. Curcumin is widely studied for its multiple therapeutic properties, including photosensitized cytotoxicity. However, the full exploitation of curcumin phototoxic potential is hindered by the extreme instability of its excited state, caused by very efficient non radiative decay by means of transfer of the enolic proton to the nearby keto oxygen. K2T23 is designed to exhibit a tautomeric equilibrium shifted toward the diketo conformers with respect to natural curcumin. This property should endow K2T23 with superior excited-state stability when excited in the UVB band, i.e., in correspondence of the diketo conformers absorption peaks, making this compound an interesting candidate for topical photodynamic therapy of, e.g., skin tumors or oral infections. In this work, the tautomeric equilibrium of K2T23 between the keto-enolic and diketo conformers is assessed in the ground state in several organic solvents by UV-visible absorption and by nuclear magnetic resonance. The same tautomeric equilibrium is also probed in the excited-state in the same environments by means of steady-state fluorescence and time-correlated single-photon counting measurements. These techniques are also exploited to elucidate the excited state dynamics and excited-state deactivation pathways of K2T23, which are compared to those determined for several other curcuminoids characterized in previous works of ours. The ability of K2T23 in photosensitizing the production of singlet oxygen is compared with that of curcumin

    CO2 Adsorption in a Robust Iron(III) Pyrazolate-Based MOF: Molecular-Level Details and Frameworks Dynamics From Powder X-ray Diffraction Adsorption Isotherms

    Get PDF
    Understanding adsorption processes at the molecular level, with multi-technique approaches, is nowadays at the frontier of porous materials research. In this work it is shown that with a proper data treatment, in situ high-resolution powder X-ray diffraction (HR-PXRD) at variable temperature and gas pressure can reveal atomic details of the accommodation sites, the framework dynamics as well as thermodynamic information (isosteric heat of adsorption) of the CO2 adsorption process in the robust iron(III) pyrazolate-based MOF Fe2(BDP)3 [H2BDP = 1,4-bis(1H-pyrazol-4-yl)benzene]. Highly reliable "HR-PXRD adsorption isotherms" can be constructed from occupancy values of CO2 molecules. The "HR-PXRD adsorption isotherms" accurately match the results of conventional static and dynamic gas sorption experiments and Monte Carlo simulations. These results are indicative of the impact of the molecular-level behavior on the bulk properties of the system under study and of the potential of the presented multi-technique approach to understand adsorption processes in metal-organic frameworks

    Spectroscopic and adsorptive studies of a thermally robust pyrazolato-based PCP

    Get PDF
    The pyrazolato-based PCP [Ni8(OH)4(OH2)2(PBP)6] (NiPBP, H2PBP = 4,4\u2019-bis(1H-pyrazol-4-yl)biphenyl), whose 3-D architecture is built upon octametallic hydroxo clusters reciprocally connected by the organic spaces, is a very promising candidate for gas adsorption applications, owing to its remarkable thermal stability (up to 400 \ub0C in air) and its high void volume (70%). As such, NiPBP was selected as a proof-of-concept material to demonstrate how an optimized set of solid state techniques can concur to create a comprehensive and coherent picture, relating (average and local) structural features to adsorptive properties. To this aim, the response of NiPBP toward different gases, retrieved by gas adsorption measurements (N2 at 77 K, in the low pressure region; H2 at 77 K, in the high pressure region), was explained in terms of local-level details, as emerged by coupling electronic, X-ray (absorption and emission), and variable temperature IR spectroscopy

    Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature

    Get PDF
    Abstract: Resveratrol is a polyphenol that has been shown to possess many applications in different fields of medicine. This systematic review has drawn attention to the axis between resveratrol and human microbiota, which plays a key role in maintaining an adequate immune response that can lead to different diseases when compromised. Resveratrol can also be an asset in new technologies,such as gene therapy. PubMed, Cochrane Library, Scopus, Web of Science, and Google Scholar were searched to find papers that matched our topic dating from 1 January 2017 up to 18 January 2022, with English‐language restriction using the following Boolean keywords: (“resveratrol” AND “microbio*”). Eighteen studies were included as relevant papers matching the purpose of our investigation. Immune response, prevention of thrombotic complications, microbiota, gene therapy, and bone regeneration were retrieved as the main topics. The analyzed studies mostly involved resveratrol supplementation and its effects on human microbiota by trials in vitro, in vivo, and ex vivo. The beneficial activity of resveratrol is evident by analyzing the changes in the host’s genetic expression and the gastrointestinal microbial community with its administration. The possibility of identifying individual microbial families may allow to tailor therapeutic plans with targeted polyphenolic diets when associated with microbial dysbiosis, such as inflammatory diseases of the gastrointestinal tract, degenerative diseases, tumors, obesity, diabetes, bone tissue regeneration, and metabolic syndrome

    ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.Peer reviewe

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed

    Coordination chemistry of 2-pyrimidinolate: Synthesis and characterization of a neutral tetrameric rhodium(I) derivative

    No full text
    A novel metal-organic complex of analytical Rh(COD)(2-pymo) formulation (COD = 1,5-cyclooctadiene, 2-Hpymo = 2-hydroxypyrimidine) has been prepared by reacting [Rh(COD)Cl]2 with 2-Hpymo. While direct syntheses in a variety of solvents (acetone, toluene or methanol) typically afforded amorphous powders, recrystallization from methanol allowed to perform a single crystal data collection on the CH3OH solvate. The crystal structure of the latter [tetragonal, P-42c, a = 13.9780(2), c = 14.4980(10) \uc5, V = 2832.7(6) \uc5^3] contains cyclic [Rh(COD)(2-pymo)]4 tetramers, in which distorted square planar metal atoms are bridged by n1-\u3bc2-N,N\u2032-exo-bidentate 2-pymo ligands in 1,3-alternate disposition. Upon dissolving both the amorphous and the crystalline (solvated) species in CD2Cl2, variable temperature NMR spectra confirmed the presence of identical (tetrameric) species, thus excluding the existence of other oligomers of different nuclearity in the amorphous powders

    Facile Preparation of Polytopic Azoles: Synthesis, Characterization, and X-ray Powder Diffraction Studies of 1,4-Bis(pyrazol-4-yl)- and 1,4-Bis(tetrazol-5-yl)benzene

    No full text
    Two polytopic azoles, 1,4-bis(pyrazol-4-yl)benzene and 1,4-bis(tetrazol-5-yl)benzene, were prepared in sizable amounts by high yield syntheses employing, in mild conditions, cheap reactants and, whenever possible, aqueous Solutions. The two species were characterized by H-1 and (CNMR)-C-13 spectroscopy and by thermal analyses, the latter evidencing their high chemical and thermal stability. X-ray powder diffraction methods disclosed their non isomorphous crystal structures. in which individual molecules interact via hydrogen bonds to form two-dimensional sheets
    corecore