223 research outputs found
Sulfate-based anionic diblock copolymer nanoparticles for efficient occlusion within zinc oxide
Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel nanocomposite materials with emergent properties. In the present paper, a series of new well-defined anionic diblock copolymer nanoparticles are synthesised by polymerisation-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerisation and then evaluated as crystal habit modifiers for the in situ formation of ZnO in aqueous solution. Systematic studies indicate that both the chemical nature (i.e. whether sulfate-based or carboxylate-based) and the mean degree of polymerisation (DP) of the anionic stabiliser block play vital roles in determining the crystal morphology. In particular, sulfate-functionalised nanoparticles are efficiently incorporated within the ZnO crystals whereas carboxylate-functionalised nanoparticles are excluded, thus anionic character is a necessary but not sufficient condition for successful occlusion. Moreover, the extent of nanoparticle occlusion within the ZnO phase can be as high as 23% by mass depending on the sulfate-based nanoparticle concentration. The optical properties, chemical composition and crystal structure of the resulting nanocomposite crystals are evaluated and an occlusion mechanism is proposed based on the observed evolution of the ZnO morphology in the presence of sulfate-based anionic nanoparticles. Finally, controlled deposition of a 5 nm gold sol onto porous ZnO particles (produced after calcination of the organic nanoparticles) significantly enhances the rate of photocatalytic decomposition of a model rhodamine B dye on exposure to a relatively weak UV source
-Classical orthogonal polynomials: A general difference calculus approach
It is well known that the classical families of orthogonal polynomials are
characterized as eigenfunctions of a second order linear
differential/difference operator. In this paper we present a study of classical
orthogonal polynomials in a more general context by using the differential (or
difference) calculus and Operator Theory. In such a way we obtain a unified
representation of them. Furthermore, some well known results related to the
Rodrigues operator are deduced. A more general characterization Theorem that
the one given in [1] and [2] for the q-polynomials of the q-Askey and Hahn
Tableaux, respectively, is established. Finally, the families of Askey-Wilson
polynomials, q-Racah polynomials, Al-Salam & Carlitz I and II, and q-Meixner
are considered.
[1] R. Alvarez-Nodarse. On characterization of classical polynomials. J.
Comput. Appl. Math., 196:320{337, 2006. [2] M. Alfaro and R. Alvarez-Nodarse. A
characterization of the classical orthogonal discrete and q-polynomials. J.
Comput. Appl. Math., 2006. In press.Comment: 18 page
More is the Same; Phase Transitions and Mean Field Theories
This paper looks at the early theory of phase transitions. It considers a
group of related concepts derived from condensed matter and statistical
physics. The key technical ideas here go under the names of "singularity",
"order parameter", "mean field theory", and "variational method".
In a less technical vein, the question here is how can matter, ordinary
matter, support a diversity of forms. We see this diversity each time we
observe ice in contact with liquid water or see water vapor, "steam", come up
from a pot of heated water. Different phases can be qualitatively different in
that walking on ice is well within human capacity, but walking on liquid water
is proverbially forbidden to ordinary humans. These differences have been
apparent to humankind for millennia, but only brought within the domain of
scientific understanding since the 1880s.
A phase transition is a change from one behavior to another. A first order
phase transition involves a discontinuous jump in a some statistical variable
of the system. The discontinuous property is called the order parameter. Each
phase transitions has its own order parameter that range over a tremendous
variety of physical properties. These properties include the density of a
liquid gas transition, the magnetization in a ferromagnet, the size of a
connected cluster in a percolation transition, and a condensate wave function
in a superfluid or superconductor. A continuous transition occurs when that
jump approaches zero. This note is about statistical mechanics and the
development of mean field theory as a basis for a partial understanding of this
phenomenon.Comment: 25 pages, 6 figure
A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability
Patsourakos et al. (Astrophys. J. 817, 14, 2016) and Patsourakos and
Georgoulis (Astron. Astrophys. 595, A121, 2016) introduced a method to infer
the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the
solar corona and farther away in the interplanetary medium. The method, based
on the conservation principle of magnetic helicity, uses the relative magnetic
helicity of the solar source region as input estimates, along with the radius
and length of the corresponding CME flux rope. The method was initially applied
to cylindrical force-free flux ropes, with encouraging results. We hereby
extend our framework along two distinct lines. First, we generalize our
formalism to several possible flux-rope configurations (linear and nonlinear
force-free, non-force-free, spheromak, and torus) to investigate the dependence
of the resulting CME axial magnetic field on input parameters and the employed
flux-rope configuration. Second, we generalize our framework to both Sun-like
and active M-dwarf stars hosting superflares. In a qualitative sense, we find
that Earth may not experience severe atmosphere-eroding magnetospheric
compression even for eruptive solar superflares with energies ~ 10^4 times
higher than those of the largest Geostationary Operational Environmental
Satellite (GOES) X-class flares currently observed. In addition, the two
recently discovered exoplanets with the highest Earth-similarity index, Kepler
438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion
due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic
fields that are much higher than that of Earth.Comment: http://adsabs.harvard.edu/abs/2017SoPh..292...89
Noise Filtering Strategies of Adaptive Signaling Networks: The Case of E. Coli Chemotaxis
Two distinct mechanisms for filtering noise in an input signal are identified
in a class of adaptive sensory networks. We find that the high frequency noise
is filtered by the output degradation process through time-averaging; while the
low frequency noise is damped by adaptation through negative feedback. Both
filtering processes themselves introduce intrinsic noises, which are found to
be unfiltered and can thus amount to a significant internal noise floor even
without signaling. These results are applied to E. coli chemotaxis. We show
unambiguously that the molecular mechanism for the Berg-Purcell time-averaging
scheme is the dephosphorylation of the response regulator CheY-P, not the
receptor adaptation process as previously suggested. The high frequency noise
due to the stochastic ligand binding-unbinding events and the random ligand
molecule diffusion is averaged by the CheY-P dephosphorylation process to a
negligible level in E.coli. We identify a previously unstudied noise source
caused by the random motion of the cell in a ligand gradient. We show that this
random walk induced signal noise has a divergent low frequency component, which
is only rendered finite by the receptor adaptation process. For gradients
within the E. coli sensing range, this dominant external noise can be
comparable to the significant intrinsic noise in the system. The dependence of
the response and its fluctuations on the key time scales of the system are
studied systematically. We show that the chemotaxis pathway may have evolved to
optimize gradient sensing, strong response, and noise control in different time
scalesComment: 15 pages, 4 figure
Insights into the expanding phenotypic spectrum of inherited disorders of biogenic amines
Inherited disorders of neurotransmitter metabolism are rare neurodevelopmental diseases presenting with movement disorders and global developmental delay. This study presents the results of the first standardized deep phenotyping approach and describes the clinical and biochemical presentation at disease onset as well as diagnostic approaches of 275 patients from the registry of the International Working Group on Neurotransmitter related Disorders. The results reveal an increased rate of prematurity, a high risk for being small for gestational age and for congenital microcephaly in some disorders. Age at diagnosis and the diagnostic delay are influenced by the diagnostic methods applied and by disease-specific symptoms. The timepoint of investigation was also a significant factor: delay to diagnosis has decreased in recent years, possibly due to novel diagnostic approaches or raised awareness. Although each disorder has a specific biochemical pattern, we observed confounding exceptions to the rule. The data provide comprehensive insights into the phenotypic spectrum of neurotransmitter disorders
Mixture of latent trait analyzers for model-based clustering of categorical data
Model-based clustering methods for continuous data are well established and commonly used in a wide range of applications. However, model-based clustering methods for categorical data are less standard. Latent class analysis is a commonly used method for model-based clustering of binary data and/or categorical data, but due to an assumed local independence structure there may not be a correspondence between the estimated latent classes and groups in the population of interest. The mixture of latent trait analyzers model extends latent class analysis by assuming a model for the categorical response variables that depends on both a categorical latent class and a continuous latent trait variable; the discrete latent class accommodates group structure and the continuous latent trait accommodates dependence within these groups. Fitting the mixture of latent trait analyzers model is potentially difficult because the likelihood function involves an integral that cannot be evaluated analytically. We develop a variational approach for fitting the mixture of latent trait models and this provides an efficient model fitting strategy. The mixture of latent trait analyzers model is demonstrated on the analysis of data from the National Long Term Care Survey (NLTCS) and voting in the U.S. Congress. The model is shown to yield intuitive clustering results and it gives a much better fit than either latent class analysis or latent trait analysis alone
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV
Isolated photon production is measured in proton-proton and lead-lead
collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the
pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80
GeV with the CMS detector at the LHC. The measured ET spectra are found to be
in good agreement with next-to-leading-order perturbative QCD predictions. The
ratio of PbPb to pp isolated photon ET-differential yields, scaled by the
number of incoherent nucleon-nucleon collisions, is consistent with unity for
all PbPb reaction centralities.Comment: Submitted to Physics Letters
Exploring the Bimodal Solar System via Sample Return from the Main Asteroid Belt: The Case for Revisiting Ceres
Abstract: Sample return from a main-belt asteroid has not yet been attempted, but appears technologically feasible. While the cost implications are significant, the scientific case for such a mission appears overwhelming. As suggested by the “Grand Tack” model, the structure of the main belt was likely forged during the earliest stages of Solar System evolution in response to migration of the giant planets. Returning samples from the main belt has the potential to test such planet migration models and the related geochemical and isotopic concept of a bimodal Solar System. Isotopic studies demonstrate distinct compositional differences between samples believed to be derived from the outer Solar System (CC or carbonaceous chondrite group) and those that are thought to be derived from the inner Solar System (NC or non-carbonaceous group). These two groups are separated on relevant isotopic variation diagrams by a clear compositional gap. The interface between these two regions appears to be broadly coincident with the present location of the asteroid belt, which contains material derived from both groups. The Hayabusa mission to near-Earth asteroid (NEA) (25143) Itokawa has shown what can be learned from a sample-return mission to an asteroid, even with a very small amount of sample. One scenario for main-belt sample return involves a spacecraft launching a projectile that strikes an object and flying through the debris cloud, which would potentially allow multiple bodies to be sampled if a number of projectiles are used on different asteroids. Another scenario is the more traditional method of landing on an asteroid to obtain the sample. A significant range of main-belt asteroids are available as targets for a sample-return mission and such a mission would represent a first step in mineralogically and isotopically mapping the asteroid belt. We argue that a sample-return mission to the asteroid belt does not necessarily have to return material from both the NC and CC groups to viably test the bimodal Solar System paradigm, as material from the NC group is already abundantly available for study. Instead, there is overwhelming evidence that we have a very incomplete suite of CC-related samples. Based on our analysis, we advocate a dedicated sample-return mission to the dwarf planet (1) Ceres as the best means of further exploring inherent Solar System variation. Ceres is an ice-rich world that may be a displaced trans-Neptunian object. We almost certainly do not have any meteorites that closely resemble material that would be brought back from Ceres. The rich heritage of data acquired by the Dawn mission makes a sample-return mission from Ceres logistically feasible at a realistic cost. No other potential main-belt target is capable of providing as much insight into the early Solar System as Ceres. Such a mission should be given the highest priority by the international scientific community
- …