Abstract

It is well known that the classical families of orthogonal polynomials are characterized as eigenfunctions of a second order linear differential/difference operator. In this paper we present a study of classical orthogonal polynomials in a more general context by using the differential (or difference) calculus and Operator Theory. In such a way we obtain a unified representation of them. Furthermore, some well known results related to the Rodrigues operator are deduced. A more general characterization Theorem that the one given in [1] and [2] for the q-polynomials of the q-Askey and Hahn Tableaux, respectively, is established. Finally, the families of Askey-Wilson polynomials, q-Racah polynomials, Al-Salam & Carlitz I and II, and q-Meixner are considered. [1] R. Alvarez-Nodarse. On characterization of classical polynomials. J. Comput. Appl. Math., 196:320{337, 2006. [2] M. Alfaro and R. Alvarez-Nodarse. A characterization of the classical orthogonal discrete and q-polynomials. J. Comput. Appl. Math., 2006. In press.Comment: 18 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020