1,460 research outputs found

    Domain Dynamics in Piezoresponse Force Microscopy: Quantitative Deconvolution and Hysteresis Loop Fine Structure

    Full text link
    Domain dynamics in the Piezoresponse Force Spectroscopy (PFS) experiment is studied using the combination of local hysteresis loop acquisition with simultaneous domain imaging. The analytical theory for PFS signal from domain of arbitrary cross-section is developed and used for the analysis of experimental data on Pb(Zr,Ti)O3 polycrystalline films. The results suggest formation of oblate domain at early stage of the domain nucleation and growth, consistent with efficient screening of depolarization field within the material. The fine structure of the hysteresis loop is shown to be related to the observed jumps in the domain geometry during domain wall propagation (nanoscale Barkhausen jumps), indicative of strong domain-defect interactions.Comment: 17 pages, 3 figures, 2 Appendices, to be submmited to Appl. Phys. Let

    The strain-induced transitions of the piezoelectric, pyroelectric and electrocaloric properties of the CuInP2_2S6_6 films

    Full text link
    The low-dimensional ferroelectrics, ferrielectrics and antiferroelectrics are of urgent scientific interest due to their unusual polar, piezoelectric, electrocaloric and pyroelectric properties. The strain engineering and strain control of the ferroelectric properties of layered 2D Van der Waals materials, such as CuInP2_2(S,Se)6_6 monolayers, thin films and nanoflakes, are of fundamental interest and especially promising for their advanced applications in nanoscale nonvolatile memories, energy conversion and storage, nano-coolers and sensors. Here, we study the polar, piezoelectric, electrocaloric and pyroelectric properties of thin strained films of a ferrielectric CuInP2_2S6_6 covered by semiconducting electrodes and reveal an unusually strong effect of a mismatch strain on these properties. In particular, the sign of the mismatch strain and its magnitude determine the complicated behavior of piezoelectric, electrocaloric and pyroelectric responses. The strain effect on these properties is opposite, i.e., "anomalous", in comparison with many other ferroelectric films, for which the out-of-plane remanent polarization, piezoelectric, electrocaloric and pyroelectric responses increase strongly for tensile strains and decrease or vanish for compressive strains.Comment: 16 pages, 5 figures, to be presented at the VI Lithuanian-Polish Meeting on Physics of Ferroelectric

    Bending-induced isostructural transitions in ultrathin layers of van der Waals ferrielectrics

    Full text link
    Using Landau-Ginzburg-Devonshire (LGD) phenomenological approach we analyze the bending-induced re-distribution of electric polarization and field, elastic stresses and strains inside ultrathin layers of van der Waals ferrielectrics. We consider a CuInP2S6 (CIPS) thin layer with fixed edges and suspended central part, the bending of which is induced by external forces. The unique aspect of CIPS is the existence of two ferrielectric states, FI1 and FI2, corresponding to big and small polarization values, which arise due to the specific four-well potential of the eighth-order LGD functional. When the CIPS layer is flat, the single-domain FI1 state is stable in the central part of the layer, and the FI2 states are stable near the fixed edges. With an increase of the layer bending below the critical value, the sizes of the FI2 states near the fixed edges decreases, and the size of the FI1 region increases. When the bending exceeds the critical value, the edge FI2 states disappear being substituted by the FI1 state, but they appear abruptly near the inflection regions and expand as the bending increases. The bending-induced isostructural FI1-FI2 transition is specific for the bended van der Waals ferrielectrics described by the eighth (or higher) order LGD functional with consideration of linear and nonlinear electrostriction couplings. The isostructural transition, which is revealed in the vicinity of room temperature, can significantly reduce the coercive voltage of ferroelectric polarization reversal in CIPS nanoflakes, allowing for the curvature-engineering control of various flexible nanodevices.Comment: 26 pages, 7 figures and Appendices A-

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ÏˆÎł (with J/ψ → ÎŒ + ÎŒ −) where photons are reconstructed from Îł → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon Ό\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, ΌΌ\mu\mu or eΌe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde
    • 

    corecore