43 research outputs found

    Transformation products of microcystin-RR with reactive species produced by radiolysis of water.

    Get PDF
    Microcystins (MCs) are potent cyclic-peptide toxins produced by cyanobacteria during freshwater bloom episodes. They can severely impact drinking water supplies and recreational waters. More than 300 MCs are known today, which are toxic, mainly by inhibiting protein phosphatases. MC-RR is an important congener, as shown in several bloom episodes. There are still serious gaps of knowledge regarding the reaction pathways and transformation products of MCs with reactive species which have a role in advanced oxidation processes (AOPs) or in degradation processes in natural waters. In this study, we applied the principles of radiation chemistry of water to investigate the transformations of the less-studied MC-RR by a range of oxidizing (hydroxyl radical, superoxide ion, hydroperoxyl radical) and reducing (hydrogen atom, hydrated electron) species. We manipulated a steady-state radiation-chemical system using scavengers to investigate and quantify the effects of single species. We used high-resolution mass spectrometry combined with computational and visualization platforms to annotate MS features of transformation products and to compare the single-species reaction pathways. Our results contribute to risk assessment concerning the fate of MCs in water treatment processes and in the environment

    Identification of photocatalytic degradation products of diazinon in TiO2 aqueous suspensions using GC/MS/MS and LC/MS with quadrupole time-of-flight mass spectrometry

    Get PDF
    AbstractThe photocatalytic degradation of the organophosphorus insecticide diazinon in aqueous suspensions has been studied by using titanium dioxide as a photocatalyst. The degradation of the insecticide was a fast process and included the formation of several intermediates that were identified using GC/ion-trap mass spectrometry with EI or CI in positive and negative ionization mode and HPLC/electrospray-QqTOF mass spectrometry. Since primarily hydroxy derivatives were identified in these aqueous suspensions, the mechanism of degradation was probably based on hydroxyl radical attack. The initial oxidative pathways of the degradation of diazinon involved the substitution of sulfur by oxygen on the PS bond, cleavage of the pyrimidine ester bond, and oxidation of the isopropyl group. Exact mass measurements of the derivatives allowed the elemental formula of the molecules to be determined confidently. Similarities to the metabolic pathways occurring in living organisms were observed

    A collaborative evaluation of LC-MS/MS based methods for BMAA analysis: soluble bound BMAA found to be an important fraction.

    Get PDF
    Exposure to β-Ν-methylamino-l-alanine (BMAA) might be linked to the incidence of amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. Analytical chemistry plays a crucial role in determining human BMAA exposure and the associated health risk, but the performance of various analytical methods currently employed is rarely compared. A CYANOCOST initiated workshop was organized aimed at training scientists in BMAA analysis, creating mutual understanding and paving the way towards interlaboratory comparison exercises. During this workshop, we tested different methods (extraction followed by derivatization and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis, or directly followed by LC-MS/MS analysis) for trueness and intermediate precision. We adapted three workup methods for the underivatized analysis of animal, brain and cyanobacterial samples. Based on recovery of the internal standard D3BMAA, the underivatized methods were accurate (mean recovery 80%) and precise (mean relative standard deviation 10%), except for the cyanobacterium Leptolyngbya. However, total BMAA concentrations in the positive controls (cycad seeds) showed higher variation (relative standard deviation 21%-32%), implying that D3BMAA was not a good indicator for the release of BMAA from bound forms. Significant losses occurred during workup for the derivatized method, resulting in low recovery ( < 10%). Most BMAA was found in a trichloroacetic acid soluble, bound form and we recommend including this fraction during analysis

    Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Get PDF
    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.Peer reviewe

    Cyanotoxins in Bloom: Ever-Increasing Occurrence and Global Distribution of Freshwater Cyanotoxins from Planktic and Benthic Cyanobacteria

    No full text
    Toxic cyanobacteria in freshwater bodies constitute a major threat to public health and aquatic ecosystems [...

    Cyanotoxins in Bloom: Ever-Increasing Occurrence and Global Distribution of Freshwater Cyanotoxins from Planktic and Benthic Cyanobacteria

    No full text
    Toxic cyanobacteria in freshwater bodies constitute a major threat to public health and aquatic ecosystems [...

    Anabaenopeptins from Cyanobacteria in Freshwater Bodies of Greece

    No full text
    Cyanobacteria are photosynthetic microorganisms that are able to produce a large number of secondary metabolites. In freshwaters, under favorable conditions, they can rapidly multiply, forming blooms, and can release their toxic/bioactive metabolites in water. Among them, anabaenopeptins (APs) are a less studied class of cyclic bioactive cyanopeptides. The occurrence and structural variety of APs in cyanobacterial blooms and cultured strains from Greek freshwaters were investigated. Cyanobacterial extracts were analyzed with LC–qTRAP MS/MS using information-dependent acquisition in enhanced ion product mode in order to obtain the fragmentation mass spectra of APs. Thirteen APs were detected, and their possible structures were annotated based on the elucidation of fragmentation spectra, including three novel ones. APs were present in the majority of bloom samples (91%) collected from nine Greek lakes during different time periods. A large variety of APs was observed, with up to eight congeners co-occurring in the same sample. AP F (87%), Oscillamide Y (87%) and AP B (65%) were the most frequently detected congeners. Thirty cyanobacterial strain cultures were also analyzed. APs were only detected in one strain (Microcystis ichtyoblabe). The results contribute to a better understanding of APs produced by freshwater cyanobacteria and expand the range of structurally characterized APs

    Leaching from a 3D-printed aligner resin

    Full text link
    AIM To quantitatively assess the degree of conversion and the water-leaching targeted compound from 3D-printed aligners. MATERIALS AND METHODS 3D-printed aligners were made of photopolymerized resin (Tera Harz TC85A). The molecular structure and degree of conversion of the set resin were investigated by ATR-FTIR spectroscopy (n = 5). The aligners (n = 10) were immersed in double distilled water for 1 week at 37°C and the eluents were analysed using liquid chromatography/mass spectrometry methods (LC-ESI-MS/MS for urethane dimethacrylate [UDMA] and LC-APCI-MS/MS for bispenol-A [BPA]). RESULTS The resin was composed of aliphatic vinyl ester-urethane monomers, with acrylate and/or methacrylate functionalization. The degree of conversion was estimated as to 83%. There was no detection of BPA in any of the assessed samples (0.25 µg/l). Quantifiable amounts of UDMA were detected in all the exposed samples, ranging from 29 to 96 µg/l. CONCLUSIONS Although efficiently polymerized and BPA free, the great variability in the amount of UDMA monomer leached from the examined samples may raise concerns on potential health hazards after repeated intraoral exposure, which is indicated for this class of materials
    corecore