21 research outputs found

    Diagnosis and management of Silver–Russell syndrome: first international consensus statement

    Get PDF
    This Consensus Statement summarizes recommendations for clinical diagnosis, investigation and management of patients with Silver–Russell syndrome (SRS), an imprinting disorder that causes prenatal and postnatal growth retardation. Considerable overlap exists between the care of individuals born small for gestational age and those with SRS. However, many specific management issues exist and evidence from controlled trials remains limited. SRS is primarily a clinical diagnosis; however, molecular testing enables confirmation of the clinical diagnosis and defines the subtype. A 'normal' result from a molecular test does not exclude the diagnosis of SRS. The management of children with SRS requires an experienced, multidisciplinary approach. Specific issues include growth failure, severe feeding difficulties, gastrointestinal problems, hypoglycaemia, body asymmetry, scoliosis, motor and speech delay and psychosocial challenges. An early emphasis on adequate nutritional status is important, with awareness that rapid postnatal weight gain might lead to subsequent increased risk of metabolic disorders. The benefits of treating patients with SRS with growth hormone include improved body composition, motor development and appetite, reduced risk of hypoglycaemia and increased height. Clinicians should be aware of possible premature adrenarche, fairly early and rapid central puberty and insulin resistance. Treatment with gonadotropin-releasing hormone analogues can delay progression of central puberty and preserve adult height potential. Long-term follow up is essential to determine the natural history and optimal management in adulthood

    Diagnosis and management of Silver-Russell syndrome: First international consensus statement

    Get PDF
    This Consensus Statement summarizes recommendations for clinical diagnosis, investigation and management of patients with Silver-Russell syndrome (SRS), an imprinting disorder that causes prenatal and postnatal growth retardation. Considerable overlap exists between the care of individuals born small for gestational age and those with SRS. However, many specific management issues exist and evidence from controlled trials remains limited. SRS is primarily a clinical diagnosis; however, molecular testing enables confirmation of the clinical diagnosis and defines the subtype. A 'normal' result from a molecular test does not exclude the diagnosis of SRS. The management of children with SRS requires an experienced, multidisciplinary approach. Specific issues include growth failure, severe feeding difficulties, gastrointestinal problems, hypoglycaemia, body asymmetry, scoliosis, motor and speech delay and psychosocial challenges. An early emphasis on adequate nutritional status is important, with awareness that rapid postnatal weight gain might lead to subsequent increased risk of metabolic disorders. The benefits of treating patients with SRS with growth hormone include improved body composition, motor development and appetite, reduced risk of hypoglycaemia and increased height. Clinicians should be aware of possible premature adrenarche, fairly early and rapid central puberty and insulin resistance. Treatment with gonadotropin-releasing hormone analogues can delay progression of central puberty and preserve adult height potential. Long-term follow up is essential to determine the natural history and optimal management in adulthood

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Integrating water-soluble polythiophene with transition-metal dichalcogenides for managing photoinduced processes

    No full text
    6 Figuras. Información complementaria disponible en la página web del editor.Transition-metal dichalcogenides (TMDs) attract increased attention for the development of donor–acceptor materials enabling improved light harvesting and optoelectronic applications. The development of novel donor–acceptor nanoensembles consisting of poly(3-thiophene sodium acetate) and ammonium functionalized MoS2 and WS2 was accomplished, while photoelectrochemical cells were fabricated and examined. Attractive interactions between the negatively charged carboxylate anion on the polythiophene backbone and the positively charged ammonium moieties on the TMDs enabled in a controlled way and in aqueous dispersions the electrostatic association of two species, evidenced upon titration experiments. A progressive quenching of the characteristic fluorescence emission of the polythiophene derivative at 555 nm revealed photoinduced intraensemble energy and/or electron transfer from the polymer to the conduction band of the two TMDs. Photoelectrochemical assays further confirmed the establishment of photoinduced charge-transfer processes in thin films, with distinct responses for the MoS2- and WS2-based systems. The MoS2-based ensemble exhibited enhanced photoanodic currents offering additional channels for hole transfer to the solution, whereas the WS2-based one displayed increased photocathodic currents providing supplementary pathways of electron transfer to the solution. Moreover, scan direction depending on photoanodic and photocathodic currents suggested the existence of yet unexploited photoinduced memory effects. These findings highlight the value of electrostatic interactions for the creation of novel donor–acceptor TMD-based ensembles and their relevance for managing the performance of photoelectrochemical and optoelectronic processes.This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 642742. Support of this work by the projects “Advanced Materials and Devices” (MIS 5002409), which is implemented under the “Action for the Strategic Development on the Research and Technological Sector”, and “National Infrastructure in Nanotechnology, Advanced Materials and Micro-/Nanoelectronics” (MIS 5002772), which is implemented under the “Reinforcement of the Research and Innovation Infrastructures”, funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and cofinanced by Greece and the European Union (European Regional Development Fund) to N.T. is acknowledged. A.M.B. and W.K.M. further acknowledge Spanish MINEICO (project grant ENE2016-79282-C5-1-R), the Gobierno de Aragón (Grupo Reconocidos DGA-T03_17R), and associated EU Regional Development Funds. E.P.U. thanks Gobierno de Aragón (Grupo de Investigación de Referencia E19_17R). The authors are thankful for SEC measurements carried out at Laboratories de Chime des Polymères Organiques (LCPO), University of Bordeaux, CNRS, Bordeaux INP. We would like to thank Dr. C. Chochos of the Institute of Biology, Medicinal Chemistry and Biotechnology/National Hellenic Research Foundation (IBMCB/NHRF) for helping with SEM images acquisition. NHRF acknowledges the General Secretariat for Research and Technology (GSRT) for the financial support through the Research Programs for Excellence under the Programmatic Agreement between Research Centers − GSRT (2015−2017), funded by Siemens SA.Peer reviewe

    Supramolecular-enhanced charge-transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots

    No full text
    The emission of a bright blue fluorescence is a unique feature common to the vast variety of polymer carbon dots (CDs) prepared from carboxylic acid and amine precursors. However, the difficulty to assign a precise chemical structure to this class of CDs yet hampers the comprehension of their underlying luminescence principle. In this work, we show that highly blue fluorescent model types of CDs can be prepared from citric acid and ethylenediamine through low temperature synthesis routes. Facilitating controlled polycondensation processes, the CDs reveal sizes of 1 - 1.5 nm formed by a compact network of short polyamide chains of about ten monomer units. Density functional theory calculations of these model CDs uncover the existence of spatially separated highest occupied molecular orbital and lowest unoccupied molecular orbital located at the amide and carboxylic groups, respectively. Photoinduced charge-transfer between these groups thus constitutes the origin of the strong blue fluorescence emission. Hydrogen-bond mediated supramolecular interactions between the polyamide chains enabling a rigid network structure further contribute to the enhancement of the radiative process. Moreover, the photoinduced charge-transfer processes in the polyamide network structure easily explain the performance of CDs in applications as revealed in studies on metal ion sensing. These findings thus are of general importance to the further development of polymer CDs with tailored properties as well as for the design of technological applications.This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 642742. AMB, and WKM further acknowledge Spanish MINEICO (project ENE2016-79282-C5-1-R), the Gobierno de Aragón (Grupo Reconocido DGA T03_17R), and associated EU Regional Development Funds). EPU acknowledges Gobierno de Aragón (Grupo Reconocido DGA E19_17R) and associated EU Regional Development Funds. Technical and human support provided by IZO-SGI, SGIker (UPV/EHU, MICINN, GV/EJ ERDF and ESF) is gratefully acknowledged for assistance and generous allocation of computational resources.Peer reviewe

    Methylome profiling of healthy and central precocious puberty girls

    No full text
    Abstract Background Recent studies demonstrated that changes in DNA methylation (DNAm) and inactivation of two imprinted genes (MKRN3 and DLK1) alter the onset of female puberty. We aimed to investigate the association of DNAm profiling with the timing of human puberty analyzing the genome-wide DNAm patterns of peripheral blood leukocytes from ten female patients with central precocious puberty (CPP) and 33 healthy girls (15 pre- and 18 post-pubertal). For this purpose, we performed comparisons between the groups: pre- versus post-pubertal, CPP versus pre-pubertal, and CPP versus post-pubertal. Results Analyzing the methylome changes associated with normal puberty, we identified 120 differentially methylated regions (DMRs) when comparing pre- and post-pubertal healthy girls. Most of these DMRs were hypermethylated in the pubertal group (99%) and located on the X chromosome (74%). Only one genomic region, containing the promoter of ZFP57, was hypomethylated in the pubertal group. ZFP57 is a transcriptional repressor required for both methylation and imprinting of multiple genomic loci. ZFP57 expression in the hypothalamus of female rhesus monkeys increased during peripubertal development, suggesting enhanced repression of downstream ZFP57 target genes. Fourteen other zinc finger (ZNF) genes were related to the hypermethylated DMRs at normal puberty. Analyzing the methylome changes associated with CPP, we demonstrated that the patients with CPP exhibited more hypermethylated CpG sites compared to both pre-pubertal (81%) and pubertal (89%) controls. Forty-eight ZNF genes were identified as having hypermethylated CpG sites in CPP. Conclusion Methylome profiling of girls at normal and precocious puberty revealed a widespread pattern of DNA hypermethylation, indicating that the pubertal process in humans is associated with specific changes in epigenetically driven regulatory control. Moreover, changes in methylation of several ZNF genes appear to be a distinct epigenetic modification underlying the initiation of human puberty

    SYK ubiquitination by CBL E3 ligases restrains cross-presentation of dead cell-associated antigens by type 1 dendritic cells

    No full text
    Summary: Cross-presentation of dead cell-associated antigens by conventional dendritic cells type 1 (cDC1s) is critical for CD8+ T cells response against many tumors and viral infections. It is facilitated by DNGR-1 (CLEC9A), an SYK-coupled cDC1 receptor that detects dead cell debris. Here, we report that DNGR-1 engagement leads to rapid activation of CBL and CBL-B E3 ligases to cause K63-linked ubiquitination of SYK and terminate signaling. Genetic deletion of CBL E3 ligases or charge-conserved mutation of target lysines within SYK abolishes SYK ubiquitination and results in enhanced DNGR-1-dependent antigen cross-presentation. We also find that cDC1 deficient in CBL E3 ligases are more efficient at cross-priming CD8+ T cells to dead cell-associated antigens and promoting host resistance to tumors. Our findings reveal a role for CBL-dependent ubiquitination in limiting cross-presentation of dead cell-associated antigens and highlight an axis of negative regulation of cDC1 activity that could be exploited to increase anti-tumor immunity

    SUSCEPTIBILITY TEST FOR FUNGI: CLINICAL AND LABORATORIAL CORRELATIONS IN MEDICAL MYCOLOGY

    Get PDF
    Nas últimas décadas, os testes de suscetibilidade a antifúngicos foram padronizados e, atualmente, servem tal como os testes de suscetibilidade a antibacterianos em laboratórios de microbiologia. Métodos de referência norte americanos e europeus foram desenvolvidos, assim como os equivalentes sistemas comerciais, estes últimos mais apropriados a laboratórios clínicos. A detecção de cepas resistentes por meio de tais sistemas permitiu o estudo e a compreensão das bases moleculares dos mecanismos de resistência de espécies fúngicas a fármacos antifúngicos. Além disso, foram realizados muitos estudos sobre a correlação de resultados obtidos in vitro com o desfecho clínico de pacientes permitindo a conclusão de que infecções por cepas resistentes têm pior evolução em relação às causadas por cepas sensíveis. Os estudos permitiram o estabelecimento de pontos de corte interpretativos (interpretative breakpoints development) para Candida spp. e Aspergillus spp., os agentes etiológicos mais frequentes de infecções fúngicas em todo o mundo. Em resumo, os testes de suscetibilidade representam uma ferramenta essencial para a orientação do tratamento de doenças fúngicas, para o conhecimento da epidemiologia local e global, bem como para a identificação de resistência a antifúngicos.During recent decades, antifungal susceptibility testing has become standardized and nowadays has the same role of the antibacterial susceptibility testing in microbiology laboratories. American and European standards have been developed, as well as equivalent commercial systems which are more appropriate for clinical laboratories. The detection of resistant strains by means of these systems has allowed the study and understanding of the molecular basis and the mechanisms of resistance of fungal species to antifungal agents. In addition, many studies on the correlation of in vitro results with the outcome of patients have been performed, reaching the conclusion that infections caused by resistant strains have worse outcome than those caused by susceptible fungal isolates. These studies have allowed the development of interpretative breakpoints for Candida spp. and Aspergillus spp., the most frequent agents of fungal infections in the world. In summary, antifungal susceptibility tests have become essential tools to guide the treatment of fungal diseases, to know the local and global disease epidemiology, and to identify resistance to antifungals

    Pathogenic variants in TNRC6B cause a genetic disorder characterised by developmental delay/intellectual disability and a spectrum of neurobehavioural phenotypes including autism and ADHD

    No full text
    BACKGROUND: Rare variants in hundreds of genes have been implicated in developmental delay (DD), intellectual disability (ID) and neurobehavioural phenotypes. METHODS: Clinical and molecular characterisation was performed on 17 patients with TNRC6B variants. Clinical data were obtained by retrospective chart review, parent interviews, direct patient interaction with providers and formal neuropsychological evaluation. RESULTS: Clinical findings included DD/ID (17/17) (speech delay in 94% (16/17), fine motor delay in 82% (14/17) and gross motor delay in 71% (12/17) of subjects), autism or autistic traits (13/17), attention deficit and hyperactivity disorder (ADHD) (11/17), other behavioural problems (7/17) and musculoskeletal findings (12/17). Other congenital malformations or clinical findings were occasionally documented. The majority of patients exhibited some dysmorphic features but no recognisable gestalt was identified. 17 heterozygous TNRC6B variants were identified in 12 male and five female unrelated subjects by exome sequencing (14), a targeted panel (2) and a chromosomal microarray (1). The variants were nonsense (7), frameshift (5), splice site (2), intragenic deletions (2) and missense (1). CONCLUSIONS: Variants in TNRC6B cause a novel genetic disorder characterised by recurrent neurocognitive and behavioural phenotypes featuring DD/ID, autism, ADHD and other behavioural abnormalities. Our data highly suggest that haploinsufficiency is the most likely pathogenic mechanism. TNRC6B should be added to the growing list of genes of the RNA-induced silencing complex associated with ID/DD, autism and ADHD
    corecore