967 research outputs found

    FT-IR Studies of Cerium Oxide Nanoparticles and Natural Zeolite Materials

    Get PDF
    An emerging topic of our days is nanoscience and nanotechnology successfully applied in the food industry. Characteristics such as size, surface area and morphology can modify the basic properties and the chemical reactivity of the nanomaterials. The breakthrough of innovative materials, processes, and phenomena at the nanoscale, as well as the progress of new experimental and theoretical techniques for research, supply novel opportunities for the expansion of original nanosystems and nanostructured materials. These study examine two types of nanoparticles, namely cerium oxide nanoparticles (CeO2 NP) and natural zeolites. In view of the importance of CeO2 NP in various biological applications, the primary objective of this study is to characterise four samples of CeO2 NP in order to understand the role of the synthesis process in the final product. Nanocrystalline natural zeolites are materials with interesting properties which allows them to be used as adjuvant in many therapies. The characterisation of CeO2 NP and two types of natural zeolites using Fourier Transform Infrared (FT-IR) spectroscopy is described. Therefore, this study examined two types of nanomaterials, namely cerium oxide nanoparticles and zeolites, for further applications on microorganisms and living cells

    DFT calculations and electrochemical studies on azulene ligands for heavy metal ions detection using chemically modified electrodes

    Get PDF
    A computational study on three related derivatives of 5-[(azulen-1-yl)methylene]-2-thioxoimidazolidin-4-one was conducted using density functional theory by calculating a series of molecular descriptors and properties of their optimized geometries (electrostatic and local ionization potentials, molecular frontier orbitals, etc.). Thermodynamic properties (zero-point energy, enthalpy, constant volume heat capacity, entropy and Gibbs energy) for these derivatives have been calculated and related to ligands electrochemical behavior. Reduction and oxidation potentials have been correlated to their calculated energy levels for LUMO and HOMO orbitals. Chemically modified electrodes based on these derivatives have been tested in view of heavy metal ions recognition, and their detection limits have been correlated to the calculated values of electron affinity

    DFT calculations and electrochemical studies on azulene ligands for heavy metal ions detection using chemically modified electrodes

    Get PDF
    A computational study on three related derivatives of 5-[(azulen-1-yl)methylene]-2-thioxoimidazolidin-4-one was conducted using density functional theory by calculating a series of molecular descriptors and properties of their optimized geometries (electrostatic and local ionization potentials, molecular frontier orbitals, etc.). Thermodynamic properties (zero-point energy, enthalpy, constant volume heat capacity, entropy and Gibbs energy) for these derivatives have been calculated and related to ligands electrochemical behavior. Reduction and oxidation potentials have been correlated to their calculated energy levels for LUMO and HOMO orbitals. Chemically modified electrodes based on these derivatives have been tested in view of heavy metal ions recognition, and their detection limits have been correlated to the calculated values of electron affinity

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe
    corecore