3,117 research outputs found
Indigenous demosponge spicules in a Late Devonian stromatoporoid basal skeleton from the Frasnian of Belgium
This paper records the first example of a demosponge spicule framework in a single specimen of a Devonian stromatoporoid from the Frasnian of southern Belgium. The small sample (2.5 × 2 cm) is a component in a brecciated carbonate from a carbonate mound in La Boverie Quarry 30 km east of Dinant. Because of the small size of the sample, generic identification is not confirmed, but the stromatoporoid basal skeleton is similar to the genus Stromatopora. The spicules are arranged in the calcified skeleton, but not in the gallery space, and are recrystallized as multi-crystalline calcite. The spicules fall into two size ranges: 10-20 μm diameter and 500-2000 μm long for the large ones and between 5-15 μm diameter and 50-100 μm length for the small ones. In tangential section, the spicules are circular, they have a simple structure, and no axial canal has been preserved. The large spicules are always monaxons, straight or slightly curved styles or strongyles. The spicules most closely resemble halichondrid/axinellid demosponge spicules and are important rare evidence of the existence of spicules in Palaeozoic stromatoporoids, reinforcing the interpretation that stromatoporoids were sponges. The basal skeleton may have had an aragonitic spherulitic mineralogy. Furthermore, the spicules indicate that this stromatoporoid sample is a demosponge. © 2014 Lethaia Foundation. Published by John Wiley & Sons Ltd
Environmental factors influence cross-talk between a heat shock protein and an oxidative stress protein modification in the lizard Gallotia galloti
Better understanding how organisms respond to their abiotic environment, especially at the biochemical level, is critical in predicting population trajectories under climate change. In this study, we measured constitutive stress biomarkers and protein post-translational modifications associated with oxidative stress in Gallotia galloti, an insular lizard species inhabiting highly heterogeneous environments on Tenerife. Tenerife is a small volcanic island in a relatively isolated archipelago off the West coast of Africa. We found that expression of GRP94, a molecular chaperone protein, and levels of protein carbonylation, a marker of cellular stress, change across different environments, depending on solar radiation-related variables and topology. Here, we report in a wild animal population, cross-talk between the baseline levels of the heat shock protein-like GRP94 and oxidative damage (protein carbonylation), which are influenced by a range of available temperatures, quantified through modelled operative temperature. This suggests a dynamic trade-off between cellular homeostasis and oxidative damage in lizards adapted to this thermally and topologically heterogeneous environment
Microchromosomes are building blocks of bird, reptile, and mammal chromosomes
Microchromosomes, once considered unimportant shreds of the chicken genome, are gene-rich elements with a high GC content and few transposable elements. Their origin has been debated for decades. We used cytological and whole-genome sequence comparisons, and chromosome conformation capture, to trace their origin and fate in genomes of reptiles, birds, and mammals. We find that microchromosomes as well as macrochromosomes are highly conserved across birds and share synteny with single small chromosomes of the chordate amphioxus, attesting to their origin as elements of an ancient animal genome. Turtles and squamates (snakes and lizards) share different subsets of ancestral microchromosomes, having independently lost microchromosomes by fusion with other microchromosomes or macrochromosomes. Patterns of fusions were quite different in different lineages. Cytological observations show that microchromosomes in all lineages are spatially separated into a central compartment at interphase and during mitosis and meiosis. This reflects higher interaction between microchromosomes than with macrochromosomes, as observed by chromosome conformation capture, and suggests some functional coherence. In highly rearranged genomes fused microchromosomes retain most ancestral characteristics, but these may erode over evolutionary time; surprisingly, de novo microchromosomes have rapidly adopted high interaction. Some chromosomes of early-branching monotreme mammals align to several bird microchromosomes, suggesting multiple microchromosome fusions in a mammalian ancestor. Subsequently, multiple rearrangements fueled the extraordinary karyotypic diversity of therian mammals. Thus, microchromosomes, far from being aberrant genetic elements, represent fundamental building blocks of amniote chromosomes, and it is mammals, rather than reptiles and birds, that are atypical
The effect of magnetic activity saturation in chromospheric flux-flux relationships
We present a homogeneous study of chromospheric and coronal flux-flux
relationships using a sample of 298 late-type dwarf active stars with spectral
types F to M. The chromospheric lines were observed simultaneously in each star
to avoid spread due to long term variability. Unlike other works, we subtract
the basal chromospheric contribution in all the spectral lines studied. For the
first time, we quantify the departure of dMe stars from the general relations.
We show that dK and dKe stars also deviate from the general trend. Studying the
flux-colour diagrams we demonstrate that the stars deviating from the general
relations are those with saturated X-ray emission and that those stars also
present saturation in the H line. Using several age spectral
indicators, we show that they are younger stars than those following the
general relationships. The non-universality of flux-flux relationships found in
this work should be taken into account when converting between fluxes in
different chromospheric activity indicators.Comment: Accepted for publication in the Monthly Notices of the Royal
Astronomical Societ
Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution.
Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define the dynamic trajectories of each cell type, revealing major gene expression reconfiguration at the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood and identifying regulatory networks guiding cellular developmental programs, states, and functions. We uncover links between expression dynamics and developmental milestones, characterize the diverse timing of when cells acquire adult-like states, and identify molecular convergence from distinct developmental origins. We further reveal cellular dynamics and their regulators implicated in neurological disorders. Finally, using this reference, we benchmark cell identities and maturation states in organoid models. Together, this captures the dynamic regulatory landscape of human cortical development.This work was supported by the following grants: R.L.—National Health and
Medical Research Council (NHMRC) Project Grant 1130168, NHMRC Investigator Grant 1178460, Silvia and Charles Viertel Senior Medical Research
Fellowship, Howard Hughes Medical Institute International Research Scholarship, and Australian Research Council (ARC) LE170100225; S.F.—NHMRC
Ideas Grant 1184421; I.V.—ARC Future Fellowship FT170100359, UNSW Scientia Fellowship, and NHMRC Project Grant RG170137; S.B.—NHMRC-ARC
Dementia Research Development Fellowship 1111206; C.P.—Raine Foundation Priming Grant RPG66-21; J.M.P.—Silvia and Charles Viertel Senior Medical Research Fellowship, ARC Future Fellowship FT180100674. This work
was supported by a Cancer Research Trust grant ‘‘Enabling advanced single
cell cancer genomics in WA’’ and Cancer Council WA enabling grant. Genomic
data were generated at the ACRF Centre for Advanced Cancer Genomics and
Genomics WA. Human brain tissue was received from the UMB Brain and Tissue Bank at the University of Maryland, part of the NIH NeuroBioBank. The
glioblastoma sample was procured and provided by the AGOG biobank,
funded by CINSW grant SRP-08-10. L.M. was a fellow of The Lorenzo and Pamela Galli Medical Research Trust. We thank Ankur Sharma and Greg Neely for
valuable feedback. The graphical abstract and elements of Figure 1A were
created with BioRender.S
QDMR: a quantitative method for identification of differentially methylated regions by entropy
DNA methylation plays critical roles in transcriptional regulation and chromatin remodeling. Differentially methylated regions (DMRs) have important implications for development, aging and diseases. Therefore, genome-wide mapping of DMRs across various temporal and spatial methylomes is important in revealing the impact of epigenetic modifications on heritable phenotypic variation. We present a quantitative approach, quantitative differentially methylated regions (QDMRs), to quantify methylation difference and identify DMRs from genome-wide methylation profiles by adapting Shannon entropy. QDMR was applied to synthetic methylation patterns and methylation profiles detected by methylated DNA immunoprecipitation microarray (MeDIP-chip) in human tissues/cells. This approach can give a reasonable quantitative measure of methylation difference across multiple samples. Then DMR threshold was determined from methylation probability model. Using this threshold, QDMR identified 10 651 tissue DMRs which are related to the genes enriched for cell differentiation, including 4740 DMRs not identified by the method developed by Rakyan et al. QDMR can also measure the sample specificity of each DMR. Finally, the application to methylation profiles detected by reduced representation bisulphite sequencing (RRBS) in mouse showed the platform-free and species-free nature of QDMR. This approach provides an effective tool for the high-throughput identification of potential functional regions involved in epigenetic regulation
Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set
We combine the results of searches for the standard model Higgs boson based
on the full CDF Run II data set obtained from sqrt(s) = 1.96 TeV p-pbar
collisions at the Fermilab Tevatron corresponding to an integrated luminosity
of 9.45/fb. The searches are conducted for Higgs bosons that are produced in
association with a W or Z boson, have masses in the range 90-150 GeV/c^2, and
decay into bb pairs. An excess of data is present that is inconsistent with the
background prediction at the level of 2.5 standard deviations (the most
significant local excess is 2.7 standard deviations).Comment: To be published in Phys. Rev. Lett (v2 contains minor updates based
on comments from PRL
Measurement of the Cross Section and Triple Gauge Couplings in Collisions at TeV
This Letter describes the current most precise measurement of the
production cross section as well as limits on anomalous couplings at a
center-of-mass energy of 1.96 TeV in proton-antiproton collisions for the
Collider Detector at Fermilab (CDF). candidates are reconstructed from
decays containing three charged leptons and missing energy from a neutrino,
where the charged leptons are either electrons or muons. Using data collected
by the CDF II detector (7.1 fb of integrated luminosity), 63 candidate
events are observed with the expected background contributing events.
The measured total cross section pb is in good
agreement with the standard model prediction of . The same sample
is used to set limits on anomalous couplings.Comment: Resubmission to PRD-RC after acceptance (27 July 2012
A search for resonant production of pairs in $4.8\ \rm{fb}^{-1}p\bar{p}\sqrt{s}=1.96\ \rm{TeV}$
We search for resonant production of tt pairs in 4.8 fb^{-1} integrated
luminosity of ppbar collision data at sqrt{s}=1.96 TeV in the lepton+jets decay
channel, where one top quark decays leptonically and the other hadronically. A
matrix element reconstruction technique is used; for each event a probability
density function (pdf) of the ttbar candidate invariant mass is sampled. These
pdfs are used to construct a likelihood function, whereby the cross section for
resonant ttbar production is estimated, given a hypothetical resonance mass and
width. The data indicate no evidence of resonant production of ttbar pairs. A
benchmark model of leptophobic Z \rightarrow ttbar is excluded with m_{Z'} <
900 GeV at 95% confidence level.Comment: accepted for publication in Physical Review D Sep 21, 201
- …