28 research outputs found

    High methylmercury in Arctic and subarctic ponds is related to nutrient levels in the warming eastern Canadian Arctic

    Get PDF
    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L−1). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3−2.2 ng L−1) than polygonal ponds (0.1−0.3 ng L−1) or lakes (<0.1 ng L−1). High MeHg was measured in the bottom waters of Subarctic thaw ponds near Kuujjuarapik (0.1−3.1 ng L−1). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems

    Meta-analysis of epigenome-wide association studies in newborns and children show widespread sex differences in blood DNA methylation

    Get PDF
    Publisher Copyright: © 2022 The AuthorsBackground: Among children, sex-specific differences in disease prevalence, age of onset, and susceptibility have been observed in health conditions including asthma, immune response, metabolic health, some pediatric and adult cancers, and psychiatric disorders. Epigenetic modifications such as DNA methylation may play a role in the sexual differences observed in diseases and other physiological traits. Methods: We performed a meta-analysis of the association of sex and cord blood DNA methylation at over 450,000 CpG sites in 8438 newborns from 17 cohorts participating in the Pregnancy And Childhood Epigenetics (PACE) Consortium. We also examined associations of child sex with DNA methylation in older children ages 5.5–10 years from 8 cohorts (n = 4268). Results: In newborn blood, sex was associated at Bonferroni level significance with differences in DNA methylation at 46,979 autosomal CpG sites (p < 1.3 × 10−7) after adjusting for white blood cell proportions and batch. Most of those sites had lower methylation levels in males than in females. Of the differentially methylated CpG sites identified in newborn blood, 68% (31,727) met look-up level significance (p < 1.1 × 10−6) in older children and had methylation differences in the same direction. Conclusions: This is a large-scale meta-analysis examining sex differences in DNA methylation in newborns and older children. Expanding upon previous studies, we replicated previous findings and identified additional autosomal sites with sex-specific differences in DNA methylation. Differentially methylated sites were enriched in genes involved in cancer, psychiatric disorders, and cardiovascular phenotypes.Peer reviewe

    Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age

    Get PDF
    Background Preterm birth and shorter duration of pregnancy are associated with increased morbidity in neonatal and later life. As the epigenome is known to have an important role during fetal development, we investigated associations between gestational age and blood DNA methylation in children. Methods We performed meta-analysis of Illumina's HumanMethylation450-array associations between gestational age and cord blood DNA methylation in 3648 newborns from 17 cohorts without common pregnancy complications, induced delivery or caesarean section. We also explored associations of gestational age with DNA methylation measured at 4-18 years in additional pediatric cohorts. Follow-up analyses of DNA methylation and gene expression correlations were performed in cord blood. DNA methylation profiles were also explored in tissues relevant for gestational age health effects: fetal brain and lung. Results We identified 8899 CpGs in cord blood that were associated with gestational age (range 27-42 weeks), at Bonferroni significance, P <1.06 x 10(- 7), of which 3343 were novel. These were annotated to 4966 genes. After restricting findings to at least three significant adjacent CpGs, we identified 1276 CpGs annotated to 325 genes. Results were generally consistent when analyses were restricted to term births. Cord blood findings tended not to persist into childhood and adolescence. Pathway analyses identified enrichment for biological processes critical to embryonic development. Follow-up of identified genes showed correlations between gestational age and DNA methylation levels in fetal brain and lung tissue, as well as correlation with expression levels. Conclusions We identified numerous CpGs differentially methylated in relation to gestational age at birth that appear to reflect fetal developmental processes across tissues. These findings may contribute to understanding mechanisms linking gestational age to health effects.Peer reviewe

    Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight

    Get PDF
    Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (P-Bonferroni <1.06 x 10(-7)). In additional analyses in 7,278 participants,Peer reviewe

    Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age

    Get PDF
    Background Preterm birth and shorter duration of pregnancy are associated with increased morbidity in neonatal and later life. As the epigenome is known to have an important role during fetal development, we investigated associations between gestational age and blood DNA methylation in children. Methods We performed meta-analysis of Illumina's HumanMethylation450-array associations between gestational age and cord blood DNA methylation in 3648 newborns from 17 cohorts without common pregnancy complications, induced delivery or caesarean section. We also explored associations of gestational age with DNA methylation measured at 4-18 years in additional pediatric cohorts. Follow-up analyses of DNA methylation and gene expression correlations were performed in cord blood. DNA methylation profiles were also explored in tissues relevant for gestational age health effects: fetal brain and lung. Results We identified 8899 CpGs in cord blood that were associated with gestational age (range 27-42 weeks), at Bonferroni significance, P < 1.06 x 10(- 7), of which 3343 were novel. These were annotated to 4966 genes. After restricting findings to at least three significant adjacent CpGs, we identified 1276 CpGs annotated to 325 genes. Results were generally consistent when analyses were restricted to term births. Cord blood findings tended not to persist into childhood and adolescence. Pathway analyses identified enrichment for biological processes critical to embryonic development. Follow-up of identified genes showed correlations between gestational age and DNA methylation levels in fetal brain and lung tissue, as well as correlation with expression levels. Conclusions We identified numerous CpGs differentially methylated in relation to gestational age at birth that appear to reflect fetal developmental processes across tissues. These findings may contribute to understanding mechanisms linking gestational age to health effects

    Analysis of DNA methylation at birth and in childhood reveals changes associated with season of birth and latitude

    Get PDF
    This is the final version. Available from BMC via the DOI in this record. Individual cohort-level data can be obtained from the respective cohort (see Additional file 1: Table S1 and Additional file 2 for cohort details).BACKGROUND: Seasonal variations in environmental exposures at birth or during gestation are associated with numerous adult traits and health outcomes later in life. Whether DNA methylation (DNAm) plays a role in the molecular mechanisms underlying the associations between birth season and lifelong phenotypes remains unclear. METHODS: We carried out epigenome-wide meta-analyses within the Pregnancy And Childhood Epigenetic Consortium to identify associations of DNAm with birth season, both at differentially methylated probes (DMPs) and regions (DMRs). Associations were examined at two time points: at birth (21 cohorts, N = 9358) and in children aged 1-11 years (12 cohorts, N = 3610). We conducted meta-analyses to assess the impact of latitude on birth season-specific associations at both time points. RESULTS: We identified associations between birth season and DNAm (False Discovery Rate-adjusted p values < 0.05) at two CpGs at birth (winter-born) and four in the childhood (summer-born) analyses when compared to children born in autumn. Furthermore, we identified twenty-six differentially methylated regions (DMR) at birth (winter-born: 8, spring-born: 15, summer-born: 3) and thirty-two in childhood (winter-born: 12, spring and summer: 10 each) meta-analyses with few overlapping DMRs between the birth seasons or the two time points. The DMRs were associated with genes of known functions in tumorigenesis, psychiatric/neurological disorders, inflammation, or immunity, amongst others. Latitude-stratified meta-analyses [higher (≄ 50°N), lower (< 50°N, northern hemisphere only)] revealed differences in associations between birth season and DNAm by birth latitude. DMR analysis implicated genes with previously reported links to schizophrenia (LAX1), skin disorders (PSORS1C, LTB4R), and airway inflammation including asthma (LTB4R), present only at birth in the higher latitudes (≄ 50°N). CONCLUSIONS: In this large epigenome-wide meta-analysis study, we provide evidence for (i) associations between DNAm and season of birth that are unique for the seasons of the year (temporal effect) and (ii) latitude-dependent variations in the seasonal associations (spatial effect). DNAm could play a role in the molecular mechanisms underlying the effect of birth season on adult health outcomes.Wellcome TrustBiotechnology and Biological Sciences Research Council (BBSRC)Biotechnology and Biological Sciences Research Council (BBSRC)European Union’s Horizon 2020Economic and Social Research Council (ESRC)Medical Research Council (MRC)Medical Research Council (MRC)European UnionSwedish foundation for strategic research (SSF)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)Environmental Protection Agency (EPA)National Cancer Institute Cancer CenterNational Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)Environmental Protection Agency (EPA)Environmental Protection Agency (EPA)European UnionEuropean UnionEuropean UnionEuropean UnionEuropean Union’s Horizon 2020European Research Council (ERC)German Ministry of Education and ResearchNational Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)Autism SpeaksNational Institutes of Health (NIH)National Institutes of Health (NIH)European UnionEuropean UnionEuropean UnionEuropean UnionEuropean UnionEuropean UnionEuropean UnionEuropean UnionEuropean UnionEuropean Research Council (ERC)Flemisch Scientific Research CouncilFlemisch Scientific Research CouncilFlemisch Scientific Research CouncilEuropean UnionFonds de recherche du QuĂ©bec - SantĂ© (FRQS)Canadian Institute of Health Research (CIHR)Canadian Institute of Health Research (CIHR)Netherlands Organisation for Scientific Research (NWO)National Institute of Child and Human DevelopmentEuropean Union’s Horizon 2020European Union’s Horizon 2020European Union’s Horizon 2020ZonMwZonMwMedical Research Council Integrative Epidemiology Unit (University of Bristol)Netherlands Heart FoundationNetherlands Heart FoundationNetherlands Organisation for Scientific Research (NWO)European UnionNational Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)Spanish Ministry of ScienceNational Institute for Health and Care Research (NIHR)Wellcome TrustNorwegian Ministry of Health and the Ministry of Education and ResearchNorwegian Ministry of Health and the Ministry of Education and ResearchNorwegian Ministry of Health and the Ministry of Education and ResearchLithuanian Agency for Science Innovation and TechnologySpanish Ministry of HealthSpanish Ministry of HealthSpanish Ministry of HealthSpanish Ministry of HealthSpanish Ministry of HealthInstituto de Salud Carlos IIIInstituto de Salud Carlos IIIEuropean Research Council (ERC)CDMRP/Department of DefenseNIGMSNational Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Asthma Campaign, UKNational Institutes of Health (NIH)Medical Research Council (MRC)National Institutes of Health (NIH)Norwegian Research CouncilNational Institute of Environmental Health SciencesResearch Council of NorwayNational Institute of Environmental Health SciencesNational Institute of Environmental Health SciencesNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institute of Environmental Health SciencesNational Institute of Environmental Health SciencesSwedish Research CouncilSwedish Initiative for research on Microdata in the Social And Medical Sciences (SIMSAM)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)Medical Research Council Integrative Epidemiology Unit (University of Bristol)Medical Research Council Integrative Epidemiology Unit (University of Bristol)Medical Research Council Integrative Epidemiology Unit (University of Bristol)Swedish Heart-Lung FoundationUniversity of MunichFoundation for Medical Research (FRM)National Agency for ResearchNational Institute for Research in Public HealthFrench Ministry of HealthFrench Ministry of ResearchInserm Bone and Joint Diseases National Research (PRO-A) and Human Nutrition National Research ProgramsParis–Sud UniversityNestlĂ©French National Institute for Population Health SurveillanceFrench National Institute for Health EducationFrench Agency for Environmental Health SafetyMutuelle GĂ©nĂ©rale de l’Education NationaleFrench National Agency for Food SecurityFrench-speaking association for the study of diabetes and metabolismItalian National Centre for Disease Prevention and ControlItalian Ministry of HealthGreek Ministry of HealthFlemish Government (Department of Economy, Science and Innovations, Agency for Care and Health and Department of Environment)The Research Foundation-FlandersFlemish Institute for Technological ResearchDiabĂšte QuĂ©becErasmus University RotterdamNetherlands Organization for Health Research and Development and the Ministry of Health, Welfare and SportErasmus MCDanish National Research FoundationDanish Regional CommitteesNovo Nordisk FoundationLundbeck FoundationHelmholtz Center for Environmental ResearchGerman Cancer Research CentreAcademy of FinlandEraNetEVOUniversity of Helsinki Research FundsSigne and Ane Gyllenberg foundationEmil Aaltonen FoundationFinnish Medical FoundationJane and Aatos Erkko FoundationJuho Vainio foundationYrjö Jahnsson foundationJalmari and Rauha Ahokas foundationPaivikki and Sakari Sohlberg FoundationSigrid Juselius FoundationSir Jules Thorn Charitable TrustSwedish Asthma and Allergy Association's Research FoundationStiftelsen Frimurare Barnhuset Stockhol

    Long-term estimates of adult survival rates of urban Herring Gulls Larus argentatus

    No full text
    Urban gull populations have increased dramatically in the last 40 years, leading to widespread concerns about potential nuisance to humans, but little accompanying research into their ecology. This study aimed to provide the first long-term estimates of apparent adult survival rates for urban Herring Gulls Larus argentatus and Lesser Black-backed Gulls L. fuscus, based on colour ringing in Bristol, southwest England. Resightings of adult birds covering 18 years (1990–2007) were analysed using capture–mark–recapture methods, with candidate models testing for differences in survival and/or resighting rate through time and between the sexes. Both species showed high apparent annual survival rates (>0.90) in the early 1990s that declined to <0.70 by 2007. Male survival rates were higher than female rates in Lesser Black-backed Gulls, and male resighting rates were higher in both species. In the early 1990s, Bristol's urban gulls displayed similar adult survival rates to published estimates for rural colonies. Both species showed evidence of long-term declines in apparent survival, which may either reflect actual reductions in survival or increased permanent emigration from the Bristol colony. Anecdotal evidence supports the latter, linking emigration to urban redevelopment or human intervention
    corecore