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Abstract

Background: Preterm birth and shorter duration of pregnancy are associated with increased morbidity in neonatal
and later life. As the epigenome is known to have an important role during fetal development, we investigated
associations between gestational age and blood DNA methylation in children.

Methods: We performed meta-analysis of Illumina’s HumanMethylation450-array associations between gestational
age and cord blood DNA methylation in 3648 newborns from 17 cohorts without common pregnancy complications,
induced delivery or caesarean section. We also explored associations of gestational age with DNA methylation measured at
4–18 years in additional pediatric cohorts. Follow-up analyses of DNA methylation and gene expression correlations were
performed in cord blood. DNA methylation profiles were also explored in tissues relevant for gestational age health effects:
fetal brain and lung.

Results:We identified 8899 CpGs in cord blood that were associated with gestational age (range 27–42
weeks), at Bonferroni significance, P < 1.06 × 10− 7, of which 3343 were novel. These were annotated to 4966
genes. After restricting findings to at least three significant adjacent CpGs, we identified 1276 CpGs annotated
to 325 genes. Results were generally consistent when analyses were restricted to term births. Cord blood
findings tended not to persist into childhood and adolescence. Pathway analyses identified enrichment for
biological processes critical to embryonic development. Follow-up of identified genes showed correlations
between gestational age and DNA methylation levels in fetal brain and lung tissue, as well as correlation with
expression levels.

Conclusions: We identified numerous CpGs differentially methylated in relation to gestational age at birth
that appear to reflect fetal developmental processes across tissues. These findings may contribute to understanding
mechanisms linking gestational age to health effects.

Keywords: Development, Epigenetics, Gestational age, Preterm birth, Transcriptomics

Background
Preterm birth (birth before 37 weeks’ gestation) is associ-
ated with increased neonatal morbidity and mortality [1,
2], as well as later health [3–6]. In children born at very
young gestational ages, bronchopulmonary dysplasia, ret-
inopathy and neurodevelopmental impairment are major
health challenges [7–12]. Lower lung function is observed
in children born moderately preterm, i.e. between 32 and
36 completed weeks, compared to those born at term
[13]. Even variation in gestational age within the normal
range (37–41 weeks) is related to various health outcomes,
including neurological and cognitive development [14–17]
and respiratory disease [4]. Mechanisms for many of these
findings are not well understood.
The epigenome is known to have an important role during

fetal development. The best studied epigenetic modification
is methylation. DNA methylation patterns have been associ-
ated with environmental factors relevant to preterm birth, in-
cluding smoking, air pollution exposure, microbial and
maternal nutritional factors [18–22]. Such exposure-related
epigenetic patterns potentially influence gene expression pro-
files and/or susceptibility to chronic disease during the life-
course [23, 24]. Further, DNA methylation in whole blood at
birth may also reflect development across fetal life. It is pos-
sible that DNA methylation changes at birth may contribute
to the myriad immediate and late health outcomes that have
been associated with gestational age.

Knowledge about DNA methylation and gene expres-
sion profiles associated with length of gestation may help
to better understand both the molecular basis of abnor-
mal processes related to prematurity as well as normal
human development. Several studies have reported asso-
ciations of gestational age among both term and preterm
births with cord blood DNA methylation [25–29]. In the
largest EWAS to date (n = 1753 newborns), 5474 CpGs
in cord blood were associated with gestational age [30].
While these individual studies have identified wide-
spread associations of DNA methylation patterns at
birth with gestational age, meta-analysis of results from
multiple individual cohorts increases sample size and,
thus, greatly increases power to detect robust differential
methylation signals.
We examined DNA methylation levels in newborns in

relation to gestational age in a large-scale meta-analysis
and also examined functional effects on expression of
nearby genes of potential relevance for later health. We
meta-analysed harmonized cohort specific EWAS results
of the association of gestational age with cord blood
DNA methylation levels from the Pregnancy And Child-
hood Epigenetics (PACE) Consortium of pregnancy and
childhood cohorts [31]. We also examined associations
with continuous gestational age limited to term new-
borns. CpGs that were differentially methylated in cord
blood in relation to gestational age were then analysed
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in two fetal tissues (lung and brain), with relevance for
health impacts of low gestational age [7–12]. We con-
ducted analyses to explore whether associations of CpG
methylation with gestational age persisted in older chil-
dren aged 4–18 years. DNA methylation status at the
identified CpGs was analysed for association with gene
expression patterns of nearby genes in cord blood during
different developmental stages. Finally, we performed
pathway and functional network analysis of identified
genes to gain insight into the biological implications of
our findings.

Methods
Figure 1 gives an outline of the design of this study.

Study population
A total of 11,000 participants in 26 independent cohorts
were included in our study. In the “all births model”
meta-analysis, we included n = 6885 newborns from 20
cohorts. In our main “no complications model”, we ex-
cluded participants with maternal complications (mater-
nal pre-eclampsia or diabetes or hypertension) and
caesarean section delivery or delivery start with induc-
tion, leaving 3648 newborns from 17 cohorts for this
analysis (Additional file 1: Table S1). For the additional
look-up of persistent differential methylation at later
ages, we used participants from 4 cohorts with whole

blood DNA methylation in early childhood (4–5 years;
n = 453), 5 cohorts with whole blood DNA methylation at
school age (7–9 years; n = 899) and 5 cohorts with whole
blood DNA methylation in adolescence (16–18 years; n =
1129). Detailed methods for each cohort are provided in
Additional file 2: Supplementary information. All cohorts
acquired ethics approval and informed consent from par-
ticipants prior to data collection through local ethics com-
mittees (Additional file 2: Supplementary information).

Gestational age
In each cohort, information on gestational age at birth
was obtained from birth certificates (n = 725), medical
records using ultrasound estimation (n = 1931), or last
menstrual period date (n = 468), or combined estimate
from ultrasound and last menstrual period date (n =
6630), or otherwise from self-administrated question-
naires (n = 1246). Gestational age was analysed in days.
Women with a gestational age of more than 42 weeks
(294 days) were excluded from all models. Additionally,
multiple births were also excluded from the analysis.

Methylation measurements and quality control
DNA methylation from newborns and older children
was measured using the Illumina450K platform. Each
cohort conducted their own quality control and
normalization of DNA methylation data, as detailed in

Fig. 1 An overview of the study design
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Additional file 1: Table S2. Cohorts corrected for batch
effects in their data using surrogate variables, ComBat
[32], or by including a batch covariate in their models.
To reduce the impact of severe outliers in the DNA
methylation data on the meta-analysis, cohorts trimmed
the methylation beta values by removing, for each CpG,
observations more than three times the interquartile
range below the 25th percentile or above the 75th per-
centile [33]. Cohorts retained all CpGs that passed qual-
ity control and removed CpGs that were mapped to the
X (n = 11,232) or Y (n = 416) chromosomes and control
probes (n = 65), leaving a maximum total of 473,864
CpGs included in the meta-analysis.

Cohort-specific statistical analyses
Each cohort performed independent EWAS according to
a common, pre-specified analysis plan. Robust linear re-
gression (rlm in the MASS R package [34]) was used to
model gestational age as the exposure and DNA methy-
lation beta values as the outcome. In the primary ana-
lysis, gestational age was used as a continuous variable
excluding cohorts that had term-only infants. In second-
ary models, we modeled term-only children defined as a
gestational age ≥ 37 weeks (≥ 259 days), but less or equal
with 42 weeks. All models were adjusted for sex, mater-
nal age (years), maternal social class (variable defined by
each individual cohort; Additional file 1: Table S2), ma-
ternal smoking status (the preferred categorization was
into three groups: no smoking in pregnancy, stopped
smoking in early pregnancy, smoking throughout preg-
nancy, but a binary categorization of any versus no
smoking was also acceptable), parity (the preferred
categorization was into two groups: no previous chil-
dren, one or more previous children), birth weight in
grams, age of the child (years) included for older chil-
dren, batch or surrogate variables. Optionally, cohorts
could include ancestry, and/or selection covariates, if
relevant to their study. We also adjusted for potential
confounding by cell type using estimated cell type pro-
portions calculated from a cord blood cell type reference
panel [35] for newborn cohorts or the adult blood cell
type reference panel [36] for cohorts with older children
using the estimateCellCounts function in the minfi R
package [37].

Meta-analysis
We performed fixed-effects meta-analysis weighted by the
inverse of the variance with METAL [38]. A shadow
meta-analysis was also conducted independently by a sec-
ond study group (see author contribution) and the results
were compared [39] (and confirmed). All downstream
analyses were conducted using R version 2.5.1 or later
[40]. Multiple testing was accounted for by applying the
Bonferroni correction level for 473,864 tests (P < 1.06 ×

10− 7). A random effects model was performed using the
METASOFT tool [41]. We explored heterogeneity be-
tween studies using the I2 statistic [42]. A priori, we de-
fined I2 > 50% as reflecting a high level of between-study
variation. In case of I2 > 50%, we replaced values with ran-
dom effects estimates as these are attenuated in the face
of heterogeneity and thus more conservative. To focus
functional analyses and bioinformatics efforts on genes
and loci that were found to be robustly associated with
gestational age, we selected regions that had at least three
adjacent Bonferroni significant CpGs (P < 1.06 × 10− 7)
[43]. Genome-wide DNA methylation meta-analysis
summary statistics corresponding to the main analysis
presented in this manuscript are available at figshare
(https://doi.org/10.6084/m9.figshare.11688762.v1) [44].

Analyses of differentially methylated regions
Differentially methylated regions (DMRs) were identified
using two methods available for meta-analysis results
comb-p [45] and DMRcate [46]. Input parameters used
for the DMR calling in both algorithms are provided in
Additional file 2: Supplementary information. Comb-p
uses a one-step Šidák correction [45] and DMRcate uses
an FDR correction [46] per default. The selected regions
were defined based on the following criteria: the minimum
number of CpGs in a region had to be 2, regional informa-
tion can be combined from probes within 1000 bp and the
multiple-testing corrected P < 0.01 (Šidák-corrected P < 0
.01 from comb-p and FDR < 0.01 from DMRcate).

Analyses of embryonic DNA methylation
DNA methylation from lung tissue of 74 foetuses (esti-
mated ages 59 to 122 days post conception [47]) were
used for analyses of differentially methylated CpGs
(three or more adjacent Bonferroni significant CpGs,
P < 1.06 × 10− 7; n = 1276) from the newborn meta-
analysis. A linear regression model adjusted for sex and
in utero smoke exposure (IUS) was applied. A Bonfer-
roni look-up level correction (0.05/1030; P < 4.85 × 10− 5)
considered as significance threshold, followed by a com-
parison of the direction of effect with that in the cord
blood meta-analysis. We also performed look-up ana-
lyses of selected 1276 CpGs in another organ, fetal brain
tissue, from 179 foetuses collected between 23 and 184
days post-conception [48]. For these analyses, we kept
the available Bonferroni correction P < 1.06 × 10− 7 as
significance threshold, followed by a comparison of the
direction of effect with that in the cord blood meta-
analysis.

Look-up analyses in older ages
Differentially methylated CpGs (three or more adjacent
CpGs below the Bonferroni correction P < 1.06 × 10− 7;
n = 1276) from the newborn meta-analyses were
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analysed with a look-up approach using data from four
early childhood, five school age, and five adolescence co-
horts. Cohorts included the same covariates in these
analyses as in the cord blood analyses and child age. We
performed fixed effects inverse variance weighted meta-
analyses using METAL [38] for these three age groups.
For this hypothesis-driven analysis, CpG methylation as-
sociation with gestational age was considered statistically
significant at nominal P < 0.05, followed by a comparison
of the direction of effect with that in the cord blood
meta-analysis.

Longitudinal analysis
Longitudinal DNA methylation data from birth to early
childhood and from birth to adolescence were analysed
for the three or more adjacent Bonferroni significant
1276 CpGs found to be associated with gestational age.
DNA methylation from two time points (birth and 4
years) in INMA and three time points (birth, 7 and 17
years) in ALSPAC were analysed separately. To estimate
changes in DNA methylation, we applied linear mixed
models with repeated measurement taking into account
the within-person time effect. The models were adjusted
for covariates and estimated cell count similar to cross-
sectional analysis. Interaction terms between age and
gestational age were included in the model to capture
differences in methylation change between birth and 4
years, birth and 7 years and 7 and 17 years per day in-
crease in gestational age at delivery, respectively. The
stable CpGs that did not change significantly from birth
to adolescence had no association with age (at nominal
P < 0.05), and no interaction between gestational age and
childhood age (at nominal P < 0.05).

Enrichment and functional analysis
CpGs were annotated using FDb.InfiniumMethyla-
tion.hg19 R package, with enhanced annotation for near-
est genes within 10Mb of each site, as previously
described [20]. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were performed using the overrep-
resentation analysis (ORA) tool ConsensusPathDB
(http://consensuspathdb.org/ [49, 50]). P values for en-
richment were adjusted for multiple testing using the
FDR method.

DNA methylation in relation to gene expression
Correlations between DNA methylation and gene ex-
pression levels were tested using paired DNA methyla-
tion and gene expression data in publicly available
datasets. We tested transcript levels of genes within a
500-kb region of the 1276 three adjacent CpGs (250 kb
upstream and 250 kb downstream). The mRNA gene ex-
pression (Affymetrix Human Transcriptome Array 2.0)

and methylation (Illumina Infinium® HumanMethyla-
tion450 BeadChip assay) were measured in cord-blood
samples from 38 newborns [51–53]. First, we created re-
siduals for mRNA expression and residuals for DNA
methylation and used linear regression models to evalu-
ate correlations between expression residuals and DNA
methylation residuals. These residual models were ad-
justed for covariates, estimated white blood cell propor-
tions, and technical variation. We corrected these
analyses for multiple testing using Bonferroni correction.

Results
Study characteristics
We meta-analysed Illumina’s HumanMethylation450-
array results from 17 independent cohorts with data on
newborn DNA methylation status, and 10 cohorts with
data on DNA methylation in older children (age 4 to 18
years), including 4 cohorts with DNA methylation data
both at birth and at an older age (Fig. 1). Table 1 summa-
rizes the characteristics of participating cohorts. A sum-
mary of methods used by each cohort is provided in
Additional file 1: Tables S1 and S2. In our main “no com-
plications” model, we excluded participants exposed to
maternal pregnancy complications (maternal diabetes,
hypertension or pre-eclampsia) and whose labour was in-
duced or who were delivered by caesarean section. With
continuous gestational age in the number of days as the
exposure (gestational age range 186–294 days correspond-
ing to 27–42 weeks), we analysed results from 3648 new-
borns and from 2481 older children. This model was
selected as the main model because associations of DNA
methylation with gestational age related to pregnancy
complications or potentially influenced by obstetric inter-
ventions may be less reflective of normal developmental
processes than newborns with spontaneous uncompli-
cated delivery. However, we also analysed a larger dataset
of 6885 newborns from 20 independent cohorts, including
pregnancies with pregnancy complications and obstetric
interventions, referred to as the “all births model” (see
below).

Associations between gestational age and newborn DNA
methylation
We identified 8899 CpGs in cord blood that were associ-
ated with gestational age (range 27–42 weeks), at Bonfer-
roni significance, P < 1.06 × 10–7, of which 3343 were
novel. These were annotated to 4966 genes. CpGs asso-
ciated with gestational age had a modest predominance
of negative (60%) versus positive (40%) direction of
effect, with an overall absolute median difference in
mean methylation of 0.36% per gestational week, IQR =
[0.26%–0.49%] (Fig. 2a). In general, results were highly
homogeneous; evidence of high between-study hetero-
geneity, using a criterion of I2 > 50%, was seen for only
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319 of the 8899 CpGs (Additional file 1: Table S3). Leave
one out analyses did not indicate an influential effect on
meta-analysis results of any single study. However, we
replaced fixed effects values with random effects esti-
mates for those CpGs with between study I2 > 50%, as
these are more conservative in the case of heterogeneity.
Differentially methylated CpGs spanned all chromosomes

(Fig. 2b). The CpG with the lowest P value (P = 2.7 × 10− 129

for cg16103712; Table 2) was annotated to MATN2 on chr
8, and the difference in mean methylation at this CpG was
2.13% lower per additional gestational week (equal to 0.30%
per day). The CpG with the largest negative association was
cg04347477, annotated to NCOR2 on chr 12 (Table 3), with
a lower mean methylation of 2.53% per additional gestational
week. B3GALT4 (chr 6) had the largest number of significant
CpGs negatively associated with gestational age (21 out of 52

Table 1 Characteristics of each cohort included in the association meta-analysis between gestational age (GA) and DNA
methylation in newborns and older children

Study
population

Cohort N N, pre-
term*

N,
term

Age
mean (SD)

Maternal age
mean (SD)

Mean GA
(days)

SD
GA

Min
GA

Max
GA

Ethnicity

Newborn ALSPAC** [29] 249 10 239 0 29.8 (4.6) 277 10.78 224 294 European

CBC (Hispanic) [54] 128 10 118 0 27.3 (5.8) 273 17.70 196 294 Hispanic

CBC (European) [54] 132 11 121 0 31.9 (5.7) 273 16.10 189 294 European

CHS [55] 120 7 113 0 29.4 (5.6) 277 11.20 230 294 Mixed

CHAMACOS [56] 110 11 99 0 25.3 (5.0) 272 10.66 210 294 Hispanic

EDEN [57] 100 2 98 0 30.8 (5.0) 276 10.11 217 287 European

EXPOSOMICS (Environage + PiccoliPlus +
RHEA) [58]

252 17 235 0 30.5 (4.8) 273 10.50 217 294 European

Generation R [59] 486 22 464 0 31.9 (4.2) 280 9.00 239 294 European

INMA [60] 134 2 132 0 30.5 (4.1) 278 9.57 234 286 European

IOW F2 [61] 93 2 91 0 23.2 (2.6) 278 10.95 236 294 European

MoBa1** [30] 749 18 731 0 29.9 (4.3) 279 10.36 209 294 European

MoBa2** [30] 460 15 445 0 30.0 (4.5) 278 10.49 209 294 European

MoBa3 [20] 177 3 174 0 29.6 (4.4) 279 10.38 199 294 European

PREDO [62] 308 5 303 0 33.4 (5.7) 278 11.20 186 294 European

Project Viva [63] 150 3 147 0 33.2 (4.5) 278 10.11 216 294 European

Meta-analysis 3648 138

Early
childhood

BAMSE [64] 145 10 135 4.3 (0.2) 31.2 (4.4) 275 16.22 187 293 European

EDEN [64] 89 2 87 5.6 (0.1) 30.8 (5.1) 276 9.23 245 287 European

INMA [64] 71 1 70 4.4 (0.2) 30.6 (4.3) 279 8.70 249 288 European

PIAMA [64] 148 4 144 4.1 (0.2) 30.6 (3.6) 278 10.51 233 294 European

Meta-analysis 453 17

School age ALSPAC [29] 273 12 261 7.5 (0.1) 29.9 (4.6) 277 10.99 224 294 European

BAMSE [64] 141 10 131 8.4 (0.4) 31.4 (4.5) 276 15.96 197 293 European

BAMSE_EpiGene [64] 232 8 224 8.3 (0.5) 30.8 (4.4) 278 11.47 209 294 European

PIAMA [64] 134 3 131 8.1 (0.3) 30.5 (3.6) 278 10.61 233 294 European

Project Viva [63] 119 2 117 7.8 (0.7) 33.5 (4.4) 278 10.32 216 294 European

Meta-analysis 899 35

Adolescence ALSPAC [29] 272 13 259 17.2 (1.0) 29.9 (4.6) 277 11.04 224 294 European

BAMSE [64] 159 7 152 16.7 (0.4) 31.2 (4.4) 278 12.70 187 294 European

IOW F1 [61] 97 2 95 17.1 (0.5) 27.1 (5.1) 280 9.83 238 294 European

NFBC86 [65] 287 9 276 16.1 (0.4) 29.0 (5.1) 280 8.65 237 294 European

RAINE [66] 314 9 305 17.0 (0.3) 29.0 (5.8) 274 11.90 196 294 European

Meta-analysis 1129 40

*Preterm birth categorized as GA less than 37 full weeks or 259 days and as term greater than 37 weeks or 259 days (but less than 42 full weeks). **This study was
included previous EWAS of gestational age [29, 30]. Cohort details and references can be found at Additional file 2 and in Felix et al. [31]
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(40%) tested CpGs annotated to B3GALT4). The largest posi-
tive association was observed for cg13036381 annotated to
LOC401097 (chr 3) (Table 3) with a difference in mean
methylation of 1.95% per additional gestational week. DDR1
(chr 6) had the largest number of significant CpGs positively
associated with gestational age (26/95 (27%) CpGs). A
complete list of associated CpGs is presented in Add-
itional file 1: Table S3 and the CpG variation across cohorts
in Additional file 3: Figure S1 (top CpGs).
We performed a sensitivity analysis by excluding co-

horts that were included in previous EWAS of gesta-
tional age [29, 30] (three cohorts: MoBa1, MoBa2 and
ALSPAC) in order to evaluate associations not driven by
previous results, and found a high correlation (r = 0.89)
of effect estimates (Additional file 3: Figure S2)

compared with results from all cohorts included in the
no complication model.
Next, we performed a meta-analysis of the larger dataset of

6885 participants from 20 studies without excluding mater-
nal complications and caesarean section delivery or induced
delivery. In this “all births model”, 17,095 CpGs located in or
near 7931 genes were associated with gestational age after
Bonferroni correction (P < 1.06 × 10− 7). Not surprisingly
given the higher levels of statistical significance in this much
larger data set, we found somewhat more between-study het-
erogeneity than in the no complications model, but high
levels (I2 > 50%) were observed for only 1784 out of these 17,
095 CpGs (Additional file 1: Table S4). We also observed a
considerable overlap of CpGs between the two models with
93% of the 8899 CpGs in the no complication model also

Fig. 2 A, B Volcano (A) and Manhattan (B) plots for the meta-analysis of gestational age and offspring DNA methylation association at birth, after
adjustment for covariates and estimated cell proportions. The effect size represents methylation change per gestational week

Merid et al. Genome Medicine           (2020) 12:25 Page 7 of 17



reaching Bonferroni significance in the all birth model and
showing the same direction of effect.

CpG localization and regulatory region analyses
The 8899 differentially methylated CpGs in relation to
continuous gestational age in the no complications model
were enriched for localization to CpG island shores (33%
of the 8899 CpGs are in shores, whereas 23% of all CpGs
on the 450 K array are in shores, Penrichment = 4.1× 10− 100,
Fig. 3), open sea (45% versus 37%, Penrichment = 1.4 × 10− 63),
enhancers (37% versus 22%, Penrichment = 1.05 × 10− 236),
DNase hypersensitivity sites (18% versus 12%, Penrichment =
1.3× 10− 56) and CpG island shelves (12% versus 10%,

Penrichment = 1.2 × 10− 11) (Fig. 3). In contrast, we found rela-
tive depletion in CpG islands (10% versus 31%, Penrichment =
2.2 × 10− 308), FANTOM 4 promoters (2.3% versus 6.7%,
Penrichment = 6.7 × 10− 79) and promoter-associated regions
(11% versus 19%, Penrichment = 2.2 × 10− 104).

Analysis restricted to term-births
To evaluate whether observed DNA methylation differences
in relation to continuous gestational age were driven by
preterm birth, we repeated the no complication model in-
cluding only infants born at term (gestational age 37 to 42
weeks). In this analysis, we meta-analysed results from 18 co-
horts (one additional cohort with term-birth data only was

Table 2 The top 10 Bonferroni-significant CpGs from the meta-analysis on the association between continuous GA and offspring
DNA methylation at birth adjusted for estimated cell proportions

CpGID Chr Genomic
coordinates

Gene
(Illumina annotation)

Relation to
island

Distance to
nearest gene

UCSC known
gene

Coefficient* P value Direction of effect
in each cohort**

cg16103712 8 99,023,869 MATN2 OpenSea 7355 MATN2 − 0.0030 2.70E−129 ---------------

cg04685228 5 172,462,626 OpenSea 726 ATP6V0E1 − 0.0028 8.55E−109 ------?--------

cg04276536 16 57,567,813 CCDC102A N_Shelf 0 CCDC102A − 0.0012 1.20E−93 ------?--------

cg19744173 2 112,913,178 FBLN7 N_Shelf 0 FBLN7 − 0.0016 4.91E−92 ---------------

cg27518892 16 57,566,936 CCDC102A N_Shelf 0 CCDC102A − 0.0018 1.29E−89 ---------------

cg13924996 11 67,053,829 ADRBK1 S_Shore 0 ADRBK1 − 0.0016 8.59E−89 ------?--------

cg04494800 6 149,775,853 ZC3H12D N_Shore 1923 ZC3H12D − 0.0016 4.52E−82 ------?--------

cg27295118 14 22,902,226 OpenSea − 500 AK125397 − 0.0024 1.20E−81 ------?--------

cg26433582 11 68,848,232 TPCN2 N_Shore 917 TPCN2 − 0.0019 1.31E−81 ------?--------

cg18183624 17 47,076,904 IGF2BP1 S_Shore 0 IGF2BP1 0.0028 8.36E−80 +++++++++++++++

*Coefficient corresponding to methylation change per additional day of gestational age
**Order of included cohorts in the meta-analysis: MoBa1, MoBa2, MoBa3, EDEN, EXPOSOMICS (Environage+PiccoliPlus+RHEA), CHS, IOWF2, Generation R, Project
Viva, CBC (Hispanic), CBC (White), ALSPAC, PREDO, CHAMACOS and INMA.”?” Means that CpG was not measured in that cohort

Table 3 The top 10 Bonferroni-significant CpGs ranked by the magnitude of positive and negative effect (5 CpGs each) from the
meta-analysis on the association between continuous GA and offspring DNA methylation at birth adjusted for estimated cell
proportions

CpGID Chr Genomic
coordinates

Gene (Illumina
annotation)

Relation to
island

Distance to
nearest gene

UCSC
known gene

Coefficient* P value Direction of effect
in each cohort**

cg13036381 3 1.6E+ 08 LOC401097 N_Shore − 927 C3orf80 0.00278 1.01E−47 +++++ − +++++++++

cg18183624 17 47,076,904 IGF2BP1 S_Shore 0 IGF2BP1 0.00277 8.36E−80 +++++++++++++++

cg04213841 13 49,792,685 NA N_Shore − 1788 MLNR 0.00245 3.60E−43 +++++?+++++++++

cg07738730 17 47,077,165 IGF2BP1 S_Shore 0 IGF2BP1 0.00217 2.87E−65 +++++++++++++ − +

cg09476997 16 2,087,932 SLC9A3R2 N_Shore 0 SLC9A3R2 0.00208 2.41E−49 +++++++++++++++

cg04347477 12 1.25E+ 08 NCOR2 Island 833 NCOR2 −0.00361 3.38E−32 ---------------

cg08943494 11 36,422,615 PRR5L OpenSea 69 PRR5L −0.00360 1.95E−24 ---------------

cg20334115 1 2.26E+ 08 PYCR2 N_Shelf 0 PYCR2 −0.00350 1.40E−35 ---------------

cg16725984 16 89,735,184 C16orf55 Island 0 C16orf55 −0.00325 3.70E−26 ---------------

cg16103712 8 99,023,869 MATN2 OpenSea 7355 MATN2 −0.00304 2.70E−129 ---------------

*Coefficient corresponding to methylation change per additional day of gestational age
**Order of included cohorts in the meta-analysis: MoBa1, MoBa2, MoBa3, EDEN, EXPOSOMICS (Environage+PiccoliPlus+RHEA), CHS, IOWF2, Generation R, Project
Viva, CBC (Hispanic), CBC (White), ALSPAC, PREDO, CHAMACOS and INMA.”?” Means that CpG was not measured in that cohort
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included; GEN3G) (n= 3593). We identified 5930 sites sig-
nificantly associated with gestational age at Bonferroni
correction (P < 1.06 × 10− 7, median difference in mean
methylation per additional gestational week = 0.43%, IQR=
[0.32%–0.58%]). The vast majority (5399; 91%) of these dif-
ferentially methylated CpGs overlapped with those found in
the main analyses (no complications model) without exclu-
sion of those born preterm (Fig. 4).

Selection of CpGs for downstream analyses
Given the large number of significant associations in our
main model (8899 CpGs), we focused subsequent analyses
on loci including at least three adjacent CpGs that sur-
vived Bonferroni correction [43]. There were 1276 differ-
entially methylated CpGs in 325 unique genes that
fulfilled this criterion (Additional file 1: Table S5). As in
the overall data, we observed a slight predominance of
negative (n = 702; 55%) versus positive (n = 574; 45%) di-
rections of effect (Fig. 2a). The lowest P value, P = 1.2 ×
10− 93, was observed for cg04276536 (CCDC102A,
chromosome 16). As for the full EWAS results, the largest
negative and positive association effect sizes were ob-
served for cg04347477 (NCOR2) and cg13036381
(LOC401097), respectively. These 1276 CpGs had the
same CpG localization enrichment pattern as the full set
of Bonferroni-significant CpGs (n = 8899), except that
there was a relative depletion in CpG island shelves (7.6%
versus 10% overall, Penrichment = 2.3 × 10− 12) and open sea
(32% versus 37%, Penrichment = 2.4 × 10− 12) (Fig. 3).

Differentially methylated region (DMR) analyses
Using two different methods for DMR analysis of gesta-
tional age in relation to newborn DNA methylation, we

identified 4479 significant (Šidák-corrected P < 0.01)
DMRs from the comb-p method and 14,671 significant
(FDR P < 0.01) DMRs from DMRcate, respectively,
including 2375 DMRs (representing 11,861 CpGs) that
were significant based on both approaches (Add-
itional file 1: Table S6). Out of the 8899 Bonferroni
significant single CpGs, 2289 CpGs overlapped with CpGs
in identified in the combined DMR analyses (11,861
CpGs). Moreover, from loci included by the three or more
adjacent CpG selection (n = 1276), 521 CpGs overlapped
with those identified in the combined DMR analyses. Of
note, out of the 1276 CpGs, 1223 and 1231 CpGs were
captured by DMRs identified using the comb-p and
DMRcate independent approaches, respectively.

Assessment of CpG methylation in earlier embryonic
stages
We examined whether the CpGs detected in cord blood
(that originate from embryonic germ layer mesoderm)
were differentially methylated in relation to gestational
age in other fetal tissues, lung and brain that originate
from the two other embryonic germ layers, ectoderm
and endoderm, respectively, collected prenatally [47, 48].
To this end, we performed look-up analyses in DNA
methylation data for 74 fetal lung samples represent-
ing gestational age 59 to 122 days (~ 8 to 17 com-
pleted gestational weeks) [47]. Out of the 1276 CpGs,
selected based on three or more adjacent CpGs from
our no complications model, 1030 CpGs were avail-
able in the fetal lung dataset. We observed associa-
tions at Bonferroni look-up level correction
significance (0.05/1030; P < 4.85 × 10− 5) between DNA
methylation levels in fetal lung tissue and gestational

Fig. 3 Position enrichment analyses for CpGs. Salmon: all CpGs in the Illumina450k annotation file, green: CpGs significantly associated with GA
after Bonferroni correction (P < 1.06 × 10− 7) and blue: three or more adjacent CpGs associated with GA after Bonferroni correction (P < 1.06 × 10− 7).
“**” represent significant two-sided doubling mid P value of the hypergeometric test
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age at tissue collection for 151 (15%) CpGs (Add-
itional file 1: Table S7). Of these 151 (58 negatively
and 93 positively associated), 78 showed the same
direction of association with gestational age in cord
blood and fetal lung tissue. The look-up analyses of
fetal brain tissue were undertaken in 179 samples
representing 23 to 184 days (~ 3 to 26 completed
weeks) [48]. Out of the 1276 CpGs, we found signifi-
cant associations (using Bonferroni correction P <
1.06 × 10− 7 cut-off since only this data was available
for analyses; Additional file 1: Table S8) for 268 CpGs
(21%) in relation to gestational age at tissue collec-
tion. Of these 268 sites, 227 had same direction of ef-
fect in the cord blood and fetal brain data. We found
enrichment more than expected by chance for our
cord blood gestational age associated CpGs (n = 1276)
in fetal lung (P = 2.1 × 10− 4) and brain (P = 3.9 × 10−
57) tissue. Thirty CpGs showed significant associations
with gestational age in all three tissues (cord blood,
fetal lung and fetal brain).

Assessment of CpG methylation in older children
We examined whether the differentially methylated
CpGs detected in cord blood samples were associated
with gestational age at birth in whole blood from older
children. We conducted three separate meta-analyses
(no complications model) reflecting different age periods
in a total of 2481 children: (i) Early childhood (4–5 years;
n = 453 from 4 cohorts); (ii) school age (7–9 years; n =
899 from 5 cohorts) and (iii) adolescence (16–18 years;
n = 1129 from 5 cohorts), Additional file 1: Table S1. Of
the 1276 three or more adjacent genome-wide

significant CpGs from our analyses in cord blood, 1258
CpGs were available for analyses in all older age groups.
Out of these CpGs, we observed 40 sites in early child-
hood, 60 sites in school age, and 60 sites in adolescence
to be associated with gestational age at the nominal sig-
nificance level, P < 0.05 with the same direction of effect
(Additional file 1: Table S9). However, no CpG survived
Bonferroni look-up level correction (0.05/1258; P <
3.97 × 10− 5). One CpG (cg26385222 annotated to
TMEM176B) previously associated with gestational age
at birth [27] was nominally significant in all age groups
with same direction of effect.

Longitudinal analysis
The results of the longitudinal analyses of blood DNA
methylation in the INMA Study (n = 177 with paired
samples from birth and 4 years) and the ALSPAC Study
(n = 281 with samples collected at birth, 7 and 17 years)
are provided in Additional file 1: Table S10. The vast
majority of gestational age associated CpGs (n = 1054/
1276; 83%) underwent changes in methylation levels
with age. Both increasing and decreasing patterns of
change during early childhood (4 years) were observed,
followed by stabilization during school age (7 years). For
example, for cg08943494 in PRR5L on chr 11, an initial
level of 61.5% and 51.4% in cord blood DNA methyla-
tion in INMA and ALSPAC respectively, decreased by
8.2% per year on average during early childhood in
INMA and by 3.3% per year on average up to school age
in ALSPAC, but then negligible further changes were
seen from 7 to 17 years (Fig. 5A). In contrast, increasing
levels were seen for cg18183624 (chr 17; IGF2BP1), from
an initial 48.8% and 38.7% in cord blood DNA methyla-
tion in INMA and ALSPAC, respectively, with a 5.1%
per year on average between birth to 4 years in INMA
and 1.9% per year on average between birth to 7 years,
but after that no changes from 7 to 17 years. (Fig. 5B).
Of the 1054 CpGs displaying changes in DNA methy-

lation levels with age, there were 589 CpGs where gesta-
tional age was associated with changes in DNA
methylation levels (i.e. where an interaction between
gestational age and age was found) from birth to 4 years
(INMA) and 460 CpGs with changes from birth to 7
years (ALSPAC). However, only 30 of the 1054 CpGs
changed significantly in DNA methylation between 7
and 17 years (ALSPAC), suggesting that gestational age-
related changes in DNA methylation levels had largely
stabilized by age 7.
We identified 222 stable CpGs out of 1276 (17%) that did

not change appreciably from birth to adolescence. As an ex-
ample, the stable DNA methylation at cg27058497 (RUNX3,
chromosome 1) is shown in Fig. 5C. A much lower propor-
tion of the gestational age associated CpGs were stable from

Fig. 4 Overlap between Bonferroni-significant CpG sites from two
different analyses after exclusion of maternal and delivery start with
induction or caesarean section (“no complication” model). The blue
colour represents the continuous gestational age main model, and
the green represents the continuous model restricted to term only.
Overlap of findings alters the colour
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birth to adolescence compared to all CpGs on the array (17%
versus 71%, Penrichment = 2.23× 10− 308).

Enrichment for biological processes and pathways
Using the complete list of 8899 CpGs annotated to 4966
genes, these were enriched for 1784 GO terms including
regulation of cellular and biological processes, system de-
velopment, different signaling pathways and organ devel-
opment (Additional file 1: Table S11). Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analyses revealed
124 significant terms at FDR < 0.05 representing a variety
of human diseases, most notably various cancers, viral in-
fections, metabolic processes and immune-related disor-
ders (Additional file 1: Table S12). The 325 genes
annotated to the 1276 CpGs, selected by virtue of three or
more CpGs being localized to the same gene, were
enriched for 198 Gene Ontology (GO) terms very similar
to those identified using Bonferroni significant CpGs
(Additional file 1: Table S13). When restricting analyses to
the 222 longitudinally stable CpGs, corresponding to 139
genes, 13 significant KEGG terms were revealed, primarily
representing infection- and immune-related disorders

(Additional file 1: Table S14). For 186 genes annotated to
the 1054 CpGs changing with postnatal age, only one
KEGG terms were identified as statistically significant
(P = 1.2 × 10− 3 for the term MAPK signaling pathways;
Additional file 1: Table S14).

Correlation of DNA methylation and gene expression
For the 1276 CpGs differentially methylated in relation
to gestational age with at least 3 adjacent CpGs, we
assessed correlations between DNA methylation and
gene expression (cis-eQTMs). From a publicly available
dataset of expression and DNA methylation measured in
38 cord blood samples [51–53], 1174 out of the 1276
CpGs were located within a 500-kb (+/− 250 kb) window
of a transcript cluster. Of these 1174, 246 unique CpGs
(367 total CpG-transcript associations) correlated signifi-
cantly with gene expression (Bonferroni P < 0.05, Add-
itional file 1: Table S15). Forty-six percent of these DNA
methylation-expression correlations were negative, with
the lowest P = 3.55 × 10− 6 coeff = − 6.03 for cg01332054
and SEMA7A expression and the largest negative effect
estimate (− 12.69) for cg26179948 and JAZF1 expression

Fig. 5 Change in DNA methylation during childhood and adolescence for selected CpG sites associated with gestational age. A Decreasing methylation
levels from birth to childhood (A.1) and stabilization during adolescence (A.2). B Increasing methylation levels from birth to childhood and stabilization
during adolescence. C Stable CpGs that did not change during childhood or adolescence; (1) INMA from birth to early childhood and (2) ALSPAC from
birth to adolescence. The figures show representative single CpGs for each category (A–C)
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(Additional file 3: Figure S3 A, B). Fifty-four percent
were positive, with the lowest P = 1.04 × 10− 5 coeff =
2.88 for cg20139800 and MOG expression and the
largest positive effect estimate (19.35) for cg03665259
and CDSN expression (Additional file 3: Figure S3 C, D).

Discussion
In this large consortium-based meta-analysis, we identi-
fied 8899 sites across the genome where gestational age
at birth was associated with cord blood DNA methyla-
tion. We also identified numerous unique differentially
methylated regions (DMRs) associated with gestational
age by applying two independent methods. The results
were consistent when restricted to births at term, dem-
onstrating that the majority of our results were not
driven by preterm births. We confirmed many of the
findings from previously published EWAS of gestational
age [23, 26, 27, 29, 30, 67] and found a very high correl-
ation between the significant CpG point estimates in
previously published datasets compared to our study
(e.g. corr = 0.92 between Hannon et al. CpGs and our
data; Additional file 1: Table S16), but importantly, we
also found 3343 CpGs corresponding to 2577 genes that
had not been described previously. There was a general
lack of stability of the cord blood findings into childhood
and adolescence. However, there was a significant over-
lap of differentially methylated CpGs in cord blood, fetal
brain and lung tissues.
We found that various functional elements were

enriched among gestational age-associated CpGs. CpG
island shores, enhancers and DNase I hypersensitive
sites were particularly susceptible to DNA methylation
changes in relation to gestational age, suggesting that
these differentially methylated sites are of functional im-
portance [68].
We found clear overlap of differentially methylated

CpGs in cord blood, fetal brain and fetal lung tissues in
relation to gestational age. Thus, our cord blood findings
seem to partly capture the epigenomic plasticity of pre-
natal development across tissues. The gene with the lar-
gest negative magnitude of association with cord blood
DNA methylation in relation to gestational age, NCOR2,
was also differentially methylated in brain and lung fetal
tissues. NCOR2 is involved in vitamin A metabolism and
has previously been associated in GWAS with lung func-
tion [69]. Vitamin A supplementation is suggested to re-
duce the risk of bronchopulmonary dysplasia in
extremely preterm-born children [70]. Differential
methylation of NCOR2 in neurons associated with age-
ing has been reported [71]. The gene with the second
largest magnitude of negative association with methyla-
tion at birth, PRR5L, has been linked in GWAS to aller-
gic diseases, found downregulated (expression) in
osteoarthritis, and differentially methylated in type II

diabetes [72–74]. The gene with the lowest P value in
our EWAS, MATN2 plays a critical role in the differenti-
ation and maintenance of skeletal muscles, peripheral
nerves, liver and skin during development and regener-
ation [75] and is suggested as a potential biomarker in
the early stage of osteoarthritis [76].
Differentially methylated CpGs associated with gesta-

tional age in cord blood were also present in our child-
hood and adolescence analyses. The only CpG
(cg26385222, TMEM176B) that was associated with ges-
tational age at all three time points (birth, childhood and
adolescence) has been associated with gestational age in
cord blood in previous studies [27]. The protein encoded
by TMEM176B has also been suggested as a potential
biomarker for various cancers [77]. The low number of
significant associations with gestational age at older ages
with no CpG surviving multiple test correction may be
partially explained by smaller sample sizes in childhood
and adolescence than at birth and by the fact that many
later exposures may obscure the association. However,
in agreement with the cross-sectional analyses, our lon-
gitudinal analyses showed that DNA methylation at
gestational age-associated CpGs typically undergoes dy-
namic changes during early childhood to a much higher
degree than overall for CpGs on the 450K array. For the
majority of these dynamics CpGs, change was most
prominent during the first years of life, with many sites
tending stabilize in methylation levels by school age. We
also identified a subset of the CpGs differential methyl-
ated at birth (17%) which seem stable over time. For
these CpGs, the early alteration of methylation levels by
length of gestation was found stable postnatally across
childhood and into adolescence.
In recent analyses by Xu et al, 14,150 CpGs related to

childhood age were identified [78] and we found 280
overlapping with these CpGs among our 1276 CpG list.
Moreover, a study by Acevedo et al. showed 794 age-
modified CpGs within 3 to 60 months after birth and 57
CpGs were overlapping with our 1276 CpG list [79].
Thus, a proportion of gestational age-related CpGs are
also associated with postnatal ageing. But similar to re-
sults from Simpkin et al. [80], we observed very little
overlap (only 3 CpGs) with the CpGs used to derive epi-
genetic age by the Hannum and Horvath approach [81,
82] or the epigenetic clock for gestational age at birth
(10 CpGs overlapping) [28]. It should be noted that
these studies primarily used the Illumina 27K array for
analyses, which makes comparison difficult.
In the functional analyses, we observed significant

enrichment for several GO terms related to embry-
onic development, regulation of process and immune
system development. The pathway analyses identified
a subset of these genes linked to diseases also associ-
ated with low gestational age, for example asthma

Merid et al. Genome Medicine           (2020) 12:25 Page 12 of 17



[83], inflammatory bowel disease [84], type I/II dia-
betes [85] and cancer (leukaemia) [86]. Importantly,
genes annotated to CpGs found stable across child-
hood also showed enrichment for infection- and
immune-related conditions. Whether cord blood DNA
methylation at these CpGs affects later disease risk
remains to be studied. Interestingly, differentially
methylated loci in relation to asthma development
have been recently identified in newborns [87]. The
stable CpG cg27058497 (RUNX3) has been associated
with in utero tobacco smoking exposure [88], child-
hood asthma [89], oesophagus squamous cell carcin-
oma [90] and chronic fatigue syndrome [91]. Despite
adjustment for maternal smoking in our gestational
age EWAS model, we observed overlap between all
FDR hits from our gestational age EWAS with those
FDR hits presented in the maternal smoking related
DNA methylation [20] with an overlap of 2302/47,324
CpGs (4.9%, Penrichment < 2.2 × 10− 308). This overlap
likely reflects some pregnant women under reporting
their smoking behaviour and the fact that smoking-
related CpGs capture quantitative smoking history
better than self-report [92, 93]. However, we cannot
rule out the possibility that some overlapping CpGs
could be involved in biologic pathways linking smok-
ing to the well-established consequence of shorter
gestational length [94]. Other potential confounders
not accounted for in this study such as maternal
obesity and alcohol intake may influence offspring
DNA methylation although we have found in the
PACE consortium that their impact on methylation
[95, 96] is very modest compared with maternal
smoking in pregnancy which was included in our
models.
This paper aimed at identifying CpGs associated with

gestational age while adjusting for birth weight. In a re-
cent PACE paper, we found 1071 CpGs at Bonferroni
significant levels association with birth weight [97]. Even
after adjustment of birth weight in our gestational age
EWAS, we observed overlap between the birth weight
EWAS and the current gestational age EWAS for 373/
1071 CpGs (34.9% Penrichment < 2.2 × 10− 308). These two
perinatal factors, birth weight and gestational age, may
have a shared impact on DNA methylation in newborns.
However, it is difficult to disentangle the effects of these
correlated factors.
To further investigate a potential functional impact of

our differentially methylated CpGs, we examined corre-
lations with gene expression in cord blood. We found
multiple cis-eQTMs among the gestational age-related
CpGs where methylation was strongly correlated with
gene expression in cord blood, implying that the identi-
fied CpGs may have a direct functional effect in new-
borns. IGF2BP1, known to be involved in adiposity and

cardiometabolic disease risk [98], and to play an essen-
tial role in embryogenesis and carcinogenesis [99, 100],
was the most significant positively differentially methyl-
ated CpG in cord blood. Low gestational age is a well-
established risk factor for later cardiometabolic disease
[101]. Our expression findings likely reflect relevant for
health outcomes associated with low gestational age.
There are potential study limitations in our study in-

cluding heterogeneity in normalization and quality con-
trol (QC) protocols since individual cohorts performed
their own QC and normalization. However, one of our
previous EWAS meta-analysis reported robust results
comparing the non-normalized methylation and differ-
ent data processing methods used across the cohorts for
normalization [20]. Furthermore, between-study hetero-
geneity at our pre-specified threshold was observed for
only a minority of differentially methylated CpGs. Co-
horts collected gestational age data from medical re-
cords, birth certificates or questionnaires in two ways,
either ultrasound estimates and/or according to last
menstrual period (or combined estimates), which may
introduce bias. However, gestational age determined by
ultrasound correlates well with last menstrual period
data [102]. Despite a large sample size, we had few ex-
treme premature births included in our dataset. Inter-
pretation of effects of DNA methylation on gene
expression was done for cis-effects only, not trans-ef-
fects. Since our analyses were primarily cross-sectional,
we cannot infer the temporality in the associations and
we cannot assume associations are causal [103]. We
recognize the possibility that the observed methylation
patterns represent fetal maturity, accompanying a “nor-
mal” developmental process or determining time in
utero; it was however not possible to include foetuses
who did not survive pregnancy most of whom will have
been delivered very early. The majority of study partici-
pants were of European ancestry, and very few cohorts
were Hispanic. We were unable to explore ethnic differ-
ences in detail since that would require large sample
sizes for each ethnic group. However, when analyses
were restricted to European-ancestry cohorts, the results
were essentially identical with correlation coefficient
0.97 (Additional file 3: Figure S4) to those with all co-
horts included. Finally, we acknowledge a potential limi-
tation by applying a filter (regions with at least three or
more adjacent CpGs with a Bonferroni-corrected P value
< 0.05) in order to capture a set of genes robustly af-
fected by gestational age, which may have led to poten-
tially important single CpGs not being included in the
functional analyses. In addition, genes with few CpGs
represented on the 450K array are likely under-
represented in the downstream analyses. The strengths
of our study are large sample size, the comprehensive
analyses using robust statistical methods, as well as the
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availability of samples at multiple ages and our ability to
compare our findings with those in fetal tissue datasets.
To account for potential cell type effects, we adjusted
our models for estimated cell counts using cord blood
and adult whole blood references [35, 36]. However, we
acknowledge the limitations of available blood cell type
reference data sets and recognize that some of the sig-
nals we identified as effects of gestational age might re-
flect differences in cell type composition that we did not
completely control. Larger panels that better capture
cell type composition across the range of gestational
age would be a useful advance. Although we present
data on all available participants in our all births
model, we based our study conclusions on the main
no complication model results, after excluding sam-
ples related to delivery induced by medical interven-
tions (induction and/or caesarean section) and
maternal complications.

Conclusions
We show that DNA methylation at numerous CpG sites
and DMRs across the genome is associated with gesta-
tional age at birth. Our results provide a comprehensive
catalogue of differential methylation in relation to this
important factor, which may serve as utility to the grow-
ing community of researchers studying the developmen-
tal origins of adult disease. Identified CpGs were linked
to multiple functional pathways related to human dis-
eases and enriched for several categories of biological
processes critical to fetal development. As such, many
sites might capture epigenomic plasticity of fetal devel-
opment across tissues. We also found that blood DNA
methylation levels in identified CpGs change over time
for a majority of CpGs and that levels stabilize after
school age. Taken together, our findings provide new
insight into epigenetics related to preterm birth and ges-
tational age.
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