351 research outputs found

    Pro-poor sewerage: solids modelling for design optimization.

    Get PDF
    More than 2·8 billion people still live without adequate sanitation. ‘Simplified sewerage’ is one possible solution, offering the possibility of an appropriate scale for urban sanitation. Adoption of such systems requires the range of engineering and advocacy tools erstwhile only available in developed countries. The application of small-bore solid transport system models is wholly appropriate for simplified sewerage, but modifications are required to account for the shallow gradients and the likely accumulation of solids due to low water usage. The importance of local water flow depth on drain self-cleansing where large accumulated solids are present has been identified, and the solid movement threshold has been quantified for a range of expected gross accumulated solids. These modifications, together with improved solid deposition predictions, have contributed to the development of a robust model suitable for application to simplified sewerage systems in order to improve efficiency and optimise design. </jats:p

    The Role of Radioactivities in Astrophysics

    Full text link
    I present both a history of radioactivity in astrophysics and an introduction to the major applications of radioactive abundances to astronomy

    Mid-infrared luminous quasars in the GOODS–Herschel fields: a large population of heavily obscured, Compton-thick quasars at z ≈ 2

    Get PDF
    We present the infrared (IR) and X-ray properties of a sample of 33 mid-IR luminous quasars (νL6 μm ≥ 6 × 1044 erg s−1) at redshift z ≈ 1–3, identified through detailed spectral energy distribution analyses of distant star-forming galaxies, using the deepest IR data from Spitzer and Herschel in the GOODS–Herschel fields. The aim is to constrain the fraction of obscured, and Compton-thick (CT, NH > 1.5 × 1024 cm−2) quasars at the peak era of nuclear and star formation activities. Despite being very bright in the mid-IR band, ≈30 per cent of these quasars are not detected in the extremely deep 2 and 4 Ms Chandra X-ray data available in these fields. X-ray spectral analysis of the detected sources reveals that the majority (≈67 per cent) are obscured by column densities NH > 1022 cm−2; this fraction reaches ≈80 per cent when including the X-ray-undetected sources (9 out of 33), which are likely to be the most heavily obscured, CT quasars. We constrain the fraction of CT quasars in our sample to be ≈24–48 per cent, and their space density to be Φ = (6.7 ± 2.2) × 10−6 Mpc−3. From the investigation of the quasar host galaxies in terms of star formation rates (SFRs) and morphological distortions, as a sign of galaxy mergers/interactions, we do not find any direct relation between SFRs and quasar luminosity or X-ray obscuration. On the other hand, there is tentative evidence that the most heavily obscured quasars have, on average, more disturbed morphologies than the unobscured/moderately obscured quasar hosts, which preferentially live in undisturbed systems. However, the fraction of quasars with disturbed morphology amongst the whole sample is ≈40 per cent, suggesting that galaxy mergers are not the main fuelling mechanism of quasars at z ≈ 2

    Four-fermion interaction from torsion as dark energy

    Full text link
    The observed small, positive cosmological constant may originate from a four-fermion interaction generated by the spin-torsion coupling in the Einstein-Cartan-Sciama-Kibble gravity if the fermions are condensing. In particular, such a condensation occurs for quark fields during the quark-gluon/hadron phase transition in the early Universe. We study how the torsion-induced four-fermion interaction is affected by adding two terms to the Dirac Lagrangian density: the parity-violating pseudoscalar density dual to the curvature tensor and a spinor-bilinear scalar density which measures the nonminimal coupling of fermions to torsion.Comment: 6 pages; published versio

    Thorough analysis of input physics in CESAM and CLES codes

    Full text link
    This contribution is not about the quality of the agreement between stellar models computed by CESAM and CLES codes, but more interesting, on what ESTA-Task~1 run has taught us about these codes and about the input physics they use. We also quantify the effects of different implementations of the same physics on the seismic properties of the stellar models, that in fact is the main aim of ESTA experiments.Comment: 11 pages, 12 fig. Accepted for publication in ApSS CoRoT/ESTA Volu

    ASTEC -- the Aarhus STellar Evolution Code

    Full text link
    The Aarhus code is the result of a long development, starting in 1974, and still ongoing. A novel feature is the integration of the computation of adiabatic oscillations for specified models as part of the code. It offers substantial flexibility in terms of microphysics and has been carefully tested for the computation of solar models. However, considerable development is still required in the treatment of nuclear reactions, diffusion and convective mixing.Comment: Astrophys. Space Sci, in the pres

    Recent Advances in Modeling Stellar Interiors

    Full text link
    Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: 1) updates to input physics of stellar models; 2) progress in two and three-dimensional evolution and hydrodynamic models; 3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid gamma Dor/delta Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as eta Car and P Cyg, and the solar abundance problem.Comment: Proceedings for invited talk at conference High Energy Density Laboratory Astrophysics 2010, Caltech, March 2010, submitted for special issue of Astrophysics and Space Science; 7 pages; 5 figure

    CANDELS : constraining the AGN-merger connection with host morphologies at z ~ 2

    Get PDF
    Using Hubble Space Telescope/WFC3 imaging taken as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we examine the role that major galaxy mergers play in triggering active galactic nucleus (AGN) activity at z ~ 2. Our sample consists of 72 moderate-luminosity (L X ~ 1042-44 erg s-1) AGNs at 1.5 < z < 2.5 that are selected using the 4 Ms Chandra observations in the Chandra Deep Field South, the deepest X-ray observations to date. Employing visual classifications, we have analyzed the rest-frame optical morphologies of the AGN host galaxies and compared them to a mass-matched control sample of 216 non-active galaxies at the same redshift. We find that most of the AGNs reside in disk galaxies (51.4+5.8 - 5.9%), while a smaller percentage are found in spheroids (27.8+5.8 - 4.6%). Roughly 16.7+5.3 - 3.5% of the AGN hosts have highly disturbed morphologies and appear to be involved in a major merger or interaction, while most of the hosts (55.6+5.6 - 5.9%) appear relatively relaxed and undisturbed. These fractions are statistically consistent with the fraction of control galaxies that show similar morphological disturbances. These results suggest that the hosts of moderate-luminosity AGNs are no more likely to be involved in an ongoing merger or interaction relative to non-active galaxies of similar mass at z ~ 2. The high disk fraction observed among the AGN hosts also appears to be at odds with predictions that merger-driven accretion should be the dominant AGN fueling mode at z ~ 2, even at moderate X-ray luminosities. Although we cannot rule out that minor mergers are responsible for triggering these systems, the presence of a large population of relatively undisturbed disk-like hosts suggests that the stochastic accretion of gas plays a greater role in fueling AGN activity at z ~ 2 than previously thought

    Measurement of charm production at central rapidity in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV

    Get PDF
    The pTp_{\rm T}-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D0^0, D+^+, and D+^{*+} in the rapidity range y<0.5|y|<0.5, and for transverse momentum 1<pT<121< p_{\rm T} <12 GeV/cc, were measured in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D0^0 \rightarrow Kπ\pi, D+^+ \rightarrow Kππ\pi\pi, D+^{*+} \rightarrow D0π^0\pi, and their charge conjugates, and was performed on a Lint=1.1L_{\rm int} = 1.1 nb1^{-1} event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at s=2.76\sqrt{s} = 2.76 TeV and at 7 TeV was evaluated by extrapolating to the full phase space the pTp_{\rm T}-differential production cross sections at s=2.76\sqrt{s} = 2.76 TeV and our previous measurements at s=7\sqrt{s} = 7 TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/307

    Lunar occultation of the diffuse radio sky: LOFAR measurements between 35 and 80 MHz

    Get PDF
    We present radio observations of the Moon between 35 and 80 MHz to demonstrate a novel technique of interferometrically measuring large-scale diffuse emission extending far beyond the primary beam (global signal) for the first time. In particular, we show that (i) the Moon appears as a negative-flux source at frequencies 35 z >12) and the Epoch of Reionization (12 > z>5)
    corecore