37 research outputs found

    An Investigation of the Behavioral Mechanisms of Antipsychotic Action Using a Drug-Drug Conditioning Paradigm

    Get PDF
    Antipsychotic drugs at noncataleptic doses selectively suppress conditioned avoidance response in rats. In our previous study, we had used a two-way active avoidance response paradigm to show that the antipsychotic-induced interoceptive state is one of the mechanisms underlying the avoidance-disruptive effect of antipsychotics. In this study, we sought to further examine this mechanism using a novel drug-drug conditioning procedure. We made use of the fact that both the typical neuroleptic haloperidol and the atypical neuroleptic olanzapine disrupt conditioned avoidance responding, whereas chlordiazepoxide (an anxiolytic) does not. We reasoned that if the antipsychotic interoceptive state is important in causing a disruption on avoidance responding (an index of antipsychotic efficacy), pairing chlordiazepoxide (a cueing drug conditional stimulus) with haloperidol or olanzapine (a cued drug unconditional stimulus) should engender chlordiazepoxide to exhibit this property and behave like an antipsychotic drug. Chlordiazepoxide exhibited an acquired antipsychotic-like property in disrupting avoidance responding after being repeatedly paired with haloperidol, but not with olanzapine. In contrast, it significantly attenuated the antiavoidance efficacy of olanzapine but not haloperidol after being repeatedly paired with these drugs. This study suggests that the haloperidol-induced interoceptive drug state is directly involved in its antiavoidance action, and chlordiazepoxide may attenuate the antiavoidance efficacy of antipsychotics (especially olanzapine). To the extent that the antiavoidance effect predicts clinical effects of antipsychotic treatment, this study suggests that the antipsychotic-induced interoceptive drug state may be an important behavioral mechanism mediating the clinical effects of antipsychotic treatments

    Olanzapine and Risperidone Disrupt Conditioned Avoidance Responding in Phencyclidine-Pretreated or Amphetamine-Pretreated Rats by Selectively Weakening Motivational Salience of Conditioned Stimulus

    Get PDF
    The rat conditioned avoidance response model is a well-established preclinical behavioral model predictive of antipsychotic efficacy. All clinically approved antipsychotic drugs disrupt conditioned avoidance responding – a feature that distinguishes them from other psychotherapeutics. We previously showed that the typical antipsychotic drug haloperidol disrupts avoidance responding by progressively attenuating the motivational salience of the conditioned stimulus (CS) in normal rats. In this study, using two pharmacological rat models of schizophrenia [e.g. phencyclidine (PCP) or amphetamine sensitization], we examined whether atypicals such as olanzapine or risperidone disrupt avoidance responding through the same behavioral mechanism. Rats were first pretreated with PCP, amphetamine, or saline under one of two different injection schedules for either 1 or 3 weeks. They were then trained to acquire avoidance responding to two types of CS (CS1 and CS2) that differed in their ability to predict the occurrence of the unconditioned stimulus. Finally, rats were tested repeatedly under olanzapine (1.0 mg/kg, subcutaneously) or risperidone (0.33 mg/kg, subcutaneously) daily for 5 or 7 consecutive days. We found that repeated olanzapine or risperidone treatment produced a progressive across-session decline in avoidance responding to both CS1 and CS2. Olanzapine and risperidone disrupted the CS2 (a less salient CS) avoidance to a greater extent than the CS1 avoidance. Pretreatment with PCP and amphetamine did not affect the disruptive effect of olanzapine or risperidone on avoidance responding. On the basis of these findings, we suggest that the atypical drugs olanzapine and risperidone, like the typical drug haloperidol, also disrupt avoidance responding primarily by attenuating the motivational salience of the CS

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    A novel Alzheimer disease locus located near the gene encoding tau protein

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordAPOE Δ4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE Δ4+ (10 352 cases and 9207 controls) and APOE Δ4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE Δ4 status. Suggestive associations (P<1 × 10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE Δ4+: 1250 cases and 536 controls; APOE Δ4-: 718 cases and 1699 controls). Among APOE Δ4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 × 10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE Δ4+ subjects (CR1 and CLU) or APOE Δ4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 × 10-7) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P≀1.3 × 10-8), frontal cortex (P≀1.3 × 10-9) and temporal cortex (P≀1.2 × 10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 × 10-6) and temporal cortex (P=2.6 × 10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE Δ4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted

    Avoidance-Suppressing Effect of Antipsychotic Drugs Is Progressively Potentiated After Repeated Administration: An Interoceptive Drug State Mechanism

    Get PDF
    Antipsychotic drugs selectively suppress conditioned avoidance response. Using a two-way active avoidance response paradigm, we examined the role of drug-induced interoceptive state in the mediation of avoidance-suppressive effect. In Experiment 1, we found that rats intermittently treated with olanzapine (OLZ) (1.0 mg/kg, s.c.) or haloperidol (0.03 mg/kg, s.c.) on the 1st day of a 3-day cycle for seven cycles exhibited a progressive across-session decline in avoidance responding, despite the fact that they exhibited a comparable high level of avoidance responding on the 3rd day of each cycle during the drug-free retraining session. In Experiments 2 and 3, rats that were previously treated with OLZ (0.5-2.0 mg/kg, s.c.) or risperidone (0.2-1.0 mg/kg) during the acquisition phase of avoidance conditioning exhibited significantly fewer avoidance responses when they were retested 3 weeks later to the same drug in comparison to rats that were previously treated with nonantipsychotic drugs (chlordiazepoxide, 10 mg/kg, citalopram 10 mg/kg, or sterile water). Overall, these findings indicate a ‘drug memory’-like mechanism that maintains the avoidance-suppressing effect of antipsychotics over time. This mechanism is likely driven by the interoceptive state caused by the antipsychotics, which may also be an important behavioral mechanism mediating the clinical effects of antipsychotic treatments

    Clozapine, but not olanzapine, disrupts conditioned avoidance response in rats by antagonizing 5-HT\u3csub\u3e2A/2C\u3c/sub\u3e receptors

    Get PDF
    The present study was designed to assess the role of 5-HT2A/2C receptors in the acute and repeated effect of clozapine and olanzapine in a rat conditioned avoidance response model, a validated model of antipsychotic activity. Male Sprague–Dawley rats that were previously treated with either phencyclidine (0.5–2.0 mg/kg, sc), amphetamine (1.25–5.0 mg/kg, sc), or saline and tested in a prepulse inhibition of acoustic startle study were used. They were first trained to acquire avoidance response to a white noise (CS1) and a pure tone (CS2) that differed in their ability to predict the occurrence of footshock. Those who acquired avoidance response were administered with clozapine (10.0 mg/kg, sc) or olanzapine (1.0 mg/kg, sc) together with either saline or 1-2,5-dimethoxy-4-iodo-amphetamine (DOI, a selective 5-HT2A/2C agonist, 1.0 or 2.5 mg/kg, sc), and their conditioned avoidance responses were tested for four consecutive days. After two drug-free retraining days, the long-term repeated effect was assessed in a challenge test during which all rats were injected with a low dose of clozapine (5 mg/kg, sc) or olanzapine (0.5 mg/kg). Results show that pretreatment of DOI dose-dependently reversed the acute disruptive effect of clozapine on both CS1 and CS2 avoidance responses, whereas it had little effect in reversing the acute effect of olanzapine. On the challenge test, pretreatment of DOI did not alter the clozapine-induced tolerance or the olanzapine- induced sensitization effect. These results confirmed our previous findings and suggest that clozapine, but not olanzapine, acts on through 5-HT2A/2C receptors to achieve its acute avoidance disruptive effect and likely its therapeutic effects. The long-term clozapine tolerance and olanzapine sensitization effects appear to be mediated by non-5-HT2A/2C receptors

    Clozapine and Olanzapine Exhibit an Intrinsic Anxiolytic Property in Two Conditioned Fear Paradigms: Contrast With Haloperidol and Chlordiazepoxide

    Get PDF
    Psychotic fear and anxiety disturbances are seen at a relatively high frequency in patients with schizophrenia. Atypical anti-psychotics are believed to show superior efficacy in reducing these symptoms. However, clinical and preclinical evidence regarding their anxiolytic efficacy has been mixed. In this study, we evaluated the possible anxiolytic property of two atypicals, clozapine and olanzapine, and compared them with typical haloperidol and chlordiazepoxide (a prototype of sedative-anxiolytic drug) in two preclinical models of fear. In Experiment 1, we used a fear-induced passive avoidance and conditioned place aversion paradigm and examined the effects of clozapine (20 mg/kg, sc), haloperidol (0.05 mg/kg, sc) and chlordiazepoxide (10mg/kg, ip). In Experiments 2 and 3, we used a two-way active avoidance conditioning paradigm and further compared the effects of clozapine (20 mg/kg, sc), haloperidol (0.05 mg/kg, sc), chlordiazepoxide(10mg/kg, ip) and three doses of olanzapine (0.5, 1.0, and 2.0 mg/kg, sc). Results show that clozapine and chlordiazepoxide, but not haloperidol, significantly attenuated the shock conditioning-induced place aversion, decreased the amount of defecations and the number of the 22-kHz vocalizations. Clozapine also reduced the shock conditioning-induced hyperthermia. Similar to clozapine, olanzapine also significantly decreased the amount of defecations and reduced the shock conditioning-induced hyperthermia, but it did not inhibit the 22-kHz vocalizations. This study demonstrates that clozapine and olanzapine possess an intrinsic anxiolytic property, which is not attributable to its superior anti-“psychotic” effect or its favorable effects on motor functions or learning and memory processes. These findings also suggest that the combined use of passive avoidance and active avoidance conditioning models can be useful in better differentiating typical and atypical anti-psychotics as well as anxiolytics

    Individual Differences in Responses to Nicotine: Tracking Changes from Adolescence to Adulthood

    Get PDF
    Aim: The present study determined the extent to which individual differences in responses to the psychostimulating effect of nicotine during adolescence predict similar individual differences during adulthood in rats. We also examined the possible long-term effects of adolescent nicotine exposure on adult prepulse inhibition (PPI) of the acoustic startle response, a measure of sensorimotor gating ability. Methods: During the adolescent phase, rats were administered saline, 0.10, 0.40, or 0.60 mg/kg nicotine via subcutaneous injections for 8 days, and motor activity was measured daily. During the adult phase, these rats were treated with the same nicotine dose as in adolescence for 8 additional days. The adolescent saline rats (now adults) were subdivided into four groups and administered saline, 0.10, 0.40, or 0.60 mg/kg nicotine, respectively. PPI was assessed 12 days after the last nicotine treatment. Results: During both phases, nicotine increased motor activity across test days in a dose-dependent manner. Motor activity of rats treated with nicotine during adolescence was positively correlated with the activity recorded from the same rats during adulthood. In both phases, there were profound individual differences in the responses to the nicotine treatments. In addition, adolescent rats treated with nicotine did not show decreased motor response to the initial exposure to nicotine. Finally, adolescent exposure to nicotine at 0.4 mg/kg, but not adulthood exposure to the same dose of nicotine, produced a robust disruption of PPI, with individual rats showing different degrees of PPI disruption. Conclusion: These findings suggest that adolescent rats have increased sensitivity to the psychostimulating effect and decreased sensitivity to the aversive effect of nicotine. Also, nicotine exposure during adolescence may have long-term detrimental effects on sensorimotor gating ability
    corecore