31 research outputs found

    Microbial characterization of sourdough for sweet baked products in the Campania region (southern Italy) by a polyphasic approach

    Get PDF
    The microflora of nine sourdoughs used for sweet bakery products underwent preliminary microbiological characterization using lactic acid bacteria (LAB) and yeast enumeration. Five sourdough samples were submitted for microbial identification by culture-dependent techniques employing 16S and 26S rRNA genes sequencing, as well as a culture-independent technique using PCR-DGGE analysis. The LAB species isolated belonged principally to facultative heterofermentative Lactobacillus spp., Leuconostoc spp., and Lactococcus spp. Yeast strains were identified as Saccharomyces cerevisiae, with one exception represented by a strain belonging to Metschnikowia pulcherrima. PCR-DGGE analysis allowed the identification of Streptococcus thermophilus, Lactobacillus sakei, Weissella groceries and Lactobacillus sanfranciscensis among lactic acid bacteria and Saccharomyces cerevisiae and Metschnikowia pulcherrima among yeasts. This polyphasic approach highlighted different levels of biodiversity, from two to eight different typical LAB species, always associated to Saccharomyces cerevisiae, that could be selected to be specifically used in naturally fermented brioche and cornetto preparation

    Overview of BITS2005, the Second Annual Meeting of the Italian Bioinformatics Society

    Get PDF
    The BITS2005 Conference brought together about 200 Italian scientists working in the field of Bioinformatics, students in Biology, Computer Science and Bioinformatics on March 17–19 2005, in Milan. This Editorial provides a brief overview of the Conference topics and introduces the peer-reviewed manuscripts accepted for publication in this Supplement

    Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies

    Get PDF
    First published: 16 February 202

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    A Qualitative Exploration of the Use of Contraband Cell Phones in Secured Facilities

    Get PDF
    Offenders accepting contraband cell phones in secured facilities violate state corrections law, and the possession of these cell phones is a form of risk taking behavior. When offenders continue this risky behavior, it affects their decision making in other domains where they are challenging authorities; and may impact the length of their incarceration. This qualitative phenomenological study examined the lived experience of ex-offenders who had contraband cell phones in secured correctional facilities in order to better understand their reasons for taking risks with contraband cell phones. The theoretical foundation for this study was Trimpop\u27s risk-homeostasis and risk-motivation theories that suggest an individual\u27s behaviors adapt to negotiate between perceived risk and desired risk in order to achieve satisfaction. The research question explored beliefs and perceptions of ex-offenders who chose to accept the risk of using contraband cell phones during their time in secured facilities. Data were collected anonymously through recorded telephone interviews with 8 male adult ex-offenders and analyzed using thematic content analysis. Findings indicated participants felt empowered by possession of cell phones in prison, and it was an acceptable risk to stay connected to family out of concern for loved ones. The study contributes to social change by providing those justice system administrators, and prison managers responsible for prison cell phone policies with more detailed information about the motivations and perspectives of offenders in respect to using contraband cell phones while imprisoned in secured facilities

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore