78 research outputs found

    Intrauterine exposures, pregnancy estrogens and breast cancer risk: where do we currently stand?

    Get PDF
    Since 1990, when a hypothesis on intrauterine influences on breast cancer risk was published, several studies have provided supportive, indirect evidence by documenting associations of birth weight and other correlates of the prenatal environment with breast cancer risk in offspring. Recent results from a unique cohort of women with documented exposure to diethylstilbestrol in utero have provided direct evidence in support of a potential role of pregnancy oestrogens on breast cancer risk in offspring

    Artificial Intelligence-based methods in head and neck cancer diagnosis : an overview

    Get PDF
    Background This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis. Methods Electronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles using AI/ML for diagnostic evaluation of HNC (2009–2020). No restrictions were placed on the AI/ML method or imaging modality used. Results In total, 32 articles were identified. HNC sites included oral cavity (n = 16), nasopharynx (n = 3), oropharynx (n = 3), larynx (n = 2), salivary glands (n = 2), sinonasal (n = 1) and in five studies multiple sites were studied. Imaging modalities included histological (n = 9), radiological (n = 8), hyperspectral (n = 6), endoscopic/clinical (n = 5), infrared thermal (n = 1) and optical (n = 1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%). Conclusions There is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice

    Methyl Complexes of the Transition Metals

    Get PDF
    Organometallic chemistry can be considered as a wide area of knowledge that combines concepts of classic organic chemistry, that is, based essentially on carbon, with molecular inorganic chemistry, especially with coordination compounds. Transition-metal methyl complexes probably represent the simplest and most fundamental way to view how these two major areas of chemistry combine and merge into novel species with intriguing features in terms of reactivity, structure, and bonding. Citing more than 500 bibliographic references, this review aims to offer a concise view of recent advances in the field of transition-metal complexes containing M-CH fragments. Taking into account the impressive amount of data that are continuously provided by organometallic chemists in this area, this review is mainly focused on results of the last five years. After a panoramic overview on M-CH compounds of Groups 3 to 11, which includes the most recent landmark findings in this area, two further sections are dedicated to methyl-bridged complexes and reactivity.Ministerio de Ciencia e Innovación Projects CTQ2010–15833, CTQ2013-45011 - P and Consolider - Ingenio 2010 CSD2007 - 00006Junta de Andalucía FQM - 119, Projects P09 - FQM - 5117 and FQM - 2126EU 7th Framework Program, Marie Skłodowska - Curie actions C OFUND – Agreement nº 26722

    Subsurface interactions of actinide species and microorganisms: Implications for the bioremediation of actinide-organic mixtures

    Full text link

    Methyl Complexes of the Transition Metals

    Full text link

    A theoretical framework for improving software project monitoring task of Agile Kanban method

    No full text
    Progress monitoring task is one of the critical steps in the software project management (SPM). Consequently, successful realization of software projects is strongly associated with used method in implementing and monitoring those projects. Over the recent years, the adoption of Agile Kanban method is being increased, however, this method still having significant challenges in progress monitoring task during the process of software development. Therefore, this paper aims to draw upon relevant theories and conducts in-depth a review in order to establish a theoretical framework to improve the progress monitoring task of Agile Kanban method. Our findings revealed that three elements need improvements, which are progress tracking (PT), limiting work-in-progress WIP (LWIP), and progress visualization (PV). In addition, the three elements are aligned with theories, which are the explicit theory of project management (TETPM), progress monitoring theory (PMT), and the program theory (TPT). These findings extend the current literature on Agile software development by providing a holistic view on how progress monitoring task should be improved

    Nanocrystalline diamond coatings: Effects of time modulation bias enhanced HFCVD parameters

    No full text
    Nanocrystalline diamond NCD coatings could improve the performances of cutting tools if the adhesion on cobalt-cemented tungsten carbide WC–Co substrates was optimized and maintained during diamond deposit. In this study, a time modulated polarized growth process during diamond hot filament chemical vapor deposition (HFCVD) method was used. NCD coatings were deposited on cobalt-cemented tungsten carbide (WC–10% Co) substrates previously coated with tantalum or zirconium nitride–molybdenum bilayer as interlayer systems to control carbon and cobalt diffusion. Continuous films consisted of diamond clusters. Their size decreased when the applied bias voltage increased and substrate temperature decreased. Raman analyses confirmed the reduction of crystallite size and formation of nanocrystalline diamond films by time modulated biased substrate HFCVD process. Scratch tests showed that the NCD/interlayer systems/WC–10% Co displayed very good film adhesion interesting for cutting tools applications compared to NCD/WC–10% Co. In addition using an interlayer system could offer additional protection when diamond coating was deteriorated. This technique seems to be promising for industrial applications in the field of machining tools when increasing the thickness of the diamond layer by only extending the time modulated deposition process
    corecore