19 research outputs found

    Localized Data Work as a Precondition for Data-Centric ML: A Case Study of Full Lifecycle Crop Disease Identification in Ghana

    Full text link
    The Ghana Cashew Disease Identification with Artificial Intelligence (CADI AI) project demonstrates the importance of sound data work as a precondition for the delivery of useful, localized datacentric solutions for public good tasks such as agricultural productivity and food security. Drone collected data and machine learning are utilized to determine crop stressors. Data, model and the final app are developed jointly and made available to local farmers via a desktop application

    Effect of desferrioxamine B and Suwannee River fulvic acid on Fe(III) release and Cr(III) desorption from goethite

    Get PDF
    Siderophores are biogenic chelating ligands that facilitate the solubilization of Fe(III) and form stable complexes with a range of contaminant metals and therefore may significantly affect their biogeochemical cycling. Desferrioxamine B (DFOB) is a trihydroxamate siderophore that acts synergistically with fulvic acid and low molecular weight organic ligands to release Fe from Fe(III) oxides. We report the results of batch dissolution experiments in which we determine the rates of Cr(III) desorption and Fe(III) release from Cr(III)-treated synthetic goethite as influenced by DFOB, by fulvic acid, and by the two compounds in combination. We observed that adsorbed Cr(III) at 3% surface coverage significantly reduced Fe(III) release from goethite for all combinations of DFOB and fulvic acid. When DFOB (270 µM) was the only ligand present, dissolved Fe(III) and Cr(III) increased approximately 1000-fold and 16-fold, respectively, as compared to the ligand-free system, a difference we attribute to the slow rate of water exchange of Cr(III). Suwannee River fuvic acid (SRFA) acts synergistically with DFOB by (i) reducing the goethite surface charge leading to increased HDFOB+ surface excess and by (ii) forming aqueous Fe(III)-SRFA species whose Fe(III) is subsequently removed by DFOB to yield aqueous Fe(III)-DFOB complexes. These observations shed new light on the synergistic relationship between DFOB and fulvic acid and reveal the mechanisms of Fe(III) acquisition available to plants and micro-organisms in Cr(III) contaminated environments
    corecore