39 research outputs found

    Matches and mismatches between conservation investments and biodiversity values in the European Union

    Get PDF
    Recently, the European Commission adopted a new strategy to halt the loss of biodiversity. Member states are expected to favor a more effective collection and redistribution of European Union (EU) funds under the current Multiannual Financial Framework for 2014-2020. Because of the large spatial variation in the distribution of biodiversity and conservation needs at the continental scale, EU instruments should ensure that countries with higher biodiversity values get more funds and resources for the conservation than other countries. Using linear regressions, we assessed the association between conservation investments and biodiversity values across member states, accounting for a variety of conservation investment indicators, taxonomic groups (including groups of plants, vertebrates, and invertebrates), and indicators of biodiversity value. In general, we found clear overall associations between conservation investments and biodiversity variables. However, some countries received more or less investment than would be expected based on biodiversity values in those countries. We also found that the extensive use of birds as unique indicators of conservation effectiveness may lead to biased decisions. Our results can inform future decisions regarding funding allocation and thus improve distribution of EU conservation funds.Peer reviewe

    DockAnalyse : an application for the analysis of protein-protein interactions

    Get PDF
    Background: Is it possible to identify what the best solution of a docking program is? The usual answer to this question is the highest score solution, but interactions between proteins are dynamic processes, and many times the interaction regions are wide enough to permit protein-protein interactions with different orientations and/or interaction energies. In some cases, as in a multimeric protein complex, several interaction regions are possible among the monomers. These dynamic processes involve interactions with surface displacements between the proteins to finally achieve the functional configuration of the protein complex. Consequently, there is not a static and single solution for the interaction between proteins, but there are several important configurations that also have to be analyzed. Results: To extract those representative solutions from the docking output datafile, we have developed an unsupervised and automatic clustering application, named DockAnalyse. This application is based on the already existing DBscan clustering method, which searches for continuities among the clusters generated by the docking output data representation. The DBscan clustering method is very robust and, moreover, solves some of the inconsistency problems of the classical clustering methods like, for example, the treatment of outliers and the dependence of the previously defined number of clusters. Conclusions: DockAnalyse makes the interpretation of the docking solutions through graphical and visual representations easier by guiding the user to find the representative solutions. We have applied our new approach to analyze several protein interactions and model the dynamic protein interaction behavior of a protein complex. DockAnalyse might also be used to describe interaction regions between proteins and, therefore, guide future flexible dockings. The application (implemented in the R package) is accessible

    Aula virtual de la asignatura Laboratorio de Programación para mejorar el rendimiento de los alumnos universitarios : Caracterización de alumnos del ciclo lectivo 2011

    Get PDF
    Se presentan los resultados de una investigación educativa centrada en la experiencia de la implementación del aula virtual de la asignatura Laboratorio de Programación en la Facultad de Ciencias Exactas y Naturales y Agrimensura (FaCENA) de la Universidad Nacional del Nordeste. Se recopilaron y procesaron los datos resultantes del trabajo interactivo mediado por el aula virtual y se analizó la dinámica de funcionamiento por parte de los alumnos.Red de Universidades con Carreras en Informática (RedUNCI

    Synergism studies with binary mixtures of pyrethroid, carbamate and organophosphate insecticides on Frankliniella occidentalis (Pergande)

    Get PDF
    [SPA] El principal mecanismo de resistencia a la mayoría de insecticidas de Frankliniella occidentales (Pergande) es metabólico. La eficiencia de las mezclas de insecticida con acrinatrín, metiocarb, formetanato y clorpirifos, se estudió por exposición tópica en poblaciones de F. occidentalis seleccionadas para la resistencia a cada insecticida. La actividad del acrinatrín contra F.occidentalis se potenció con los insecticidas carbamatos, siendo el metiocarb un sinergista mucho mejor que el formetanato. La acción de las monooxigenasas sobre los carbamatos prevenía la degradación del piretroide, dotando así de un nivel de sinergismo a través de la inhibición competitiva del sustrato. [ENG] The major mechanism of resistance to most insecticides in Frankliniella occidentalis is metabolic. The efficacy of insecticide mixtures of acrinathrin, methiocarb, formetanate and chlorpyrifos was studied by topic exposure in strains of F occidentalis selected for resistance to each insecticide. Acrinathrin activity against F occidentalis was enhanced by carbamate insecticides, being methiocarb much better synergist than formetanate. Monooxygenases action on the carbamates would prevent degradation of the pyrethroid, hence providing a level of synergism by competitive substrate inhibition

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Climate matching and anthropogenic factors contribute to the colonization and extinction of local populations during avian invasions

    Get PDF
    AIM: Concern about the impacts of biological invasions has generated a great deal of interest in understanding factors that determine invasion success. Most of our current knowledge comes from static approaches that use spatial patterns as a proxy of temporal processes. These approaches assume that species are present in areas where environmental conditions are the most favourable. However, this assumption is problematic when applied to dynamic processes such as species expansions when equilibrium has not been reached. LOCATION: Iberian Peninsula. TAXON: Birds. METHODS: In our work, we analyse the roles played by human activities, climatic matching and spatial connectivity on the two main underlying processes shaping the spread of invasive species (i.e. colonization and extinction) using a dynamic modelling approach. We use a large data set that has recorded the occurrence of two invasive bird speciesâthe ringânecked (Psittacula krameri) and the monk (Myiopsitta monachus) parakeetsâin the Iberian Peninsula from 1991 to 2016. RESULTS: Human activities and climate matching play a role on species range dynamics. Human influence and urbanization were the most relevant factors explaining colonization. Additionally, an effect of climate matching was found. Persistence (the inverse of extinction) was mainly affected by human influence for the monk parakeet and by the extent of urban environments for the ringânecked parakeet. MAIN CONCLUSIONS: Human activities play a major role not only on colonization of new locations, but also on persistence during range expansion. Additionally, natural processesânotably climate matchingâalso affect new colonizations. These findings add to our understanding of the mechanisms that might allow alien species to expand their geographic range at new locations and might help to improve our capacity to assess invasion risks and impacts accurately

    DockAnalyse : an application for the analysis of protein-protein interactions

    No full text
    Background: Is it possible to identify what the best solution of a docking program is? The usual answer to this question is the highest score solution, but interactions between proteins are dynamic processes, and many times the interaction regions are wide enough to permit protein-protein interactions with different orientations and/or interaction energies. In some cases, as in a multimeric protein complex, several interaction regions are possible among the monomers. These dynamic processes involve interactions with surface displacements between the proteins to finally achieve the functional configuration of the protein complex. Consequently, there is not a static and single solution for the interaction between proteins, but there are several important configurations that also have to be analyzed. Results: To extract those representative solutions from the docking output datafile, we have developed an unsupervised and automatic clustering application, named DockAnalyse. This application is based on the already existing DBscan clustering method, which searches for continuities among the clusters generated by the docking output data representation. The DBscan clustering method is very robust and, moreover, solves some of the inconsistency problems of the classical clustering methods like, for example, the treatment of outliers and the dependence of the previously defined number of clusters. Conclusions: DockAnalyse makes the interpretation of the docking solutions through graphical and visual representations easier by guiding the user to find the representative solutions. We have applied our new approach to analyze several protein interactions and model the dynamic protein interaction behavior of a protein complex. DockAnalyse might also be used to describe interaction regions between proteins and, therefore, guide future flexible dockings. The application (implemented in the R package) is accessible
    corecore