557 research outputs found

    Epidemiologic Survey of Kawasaki Disease in Jilin from 1999 Through 2008

    Get PDF
    The epidemiologic pictures of Kawasaki disease (KD) in Jilin Province of China is still not clear. We sent a questionnaire form and diagnostic guidelines for KD to the province's 32 hospitals above the county and city level with pediatric in-patients. All patients with KD diagnosed during January 1999 through December 2008 were recruited in this survey. The incidence of KD was 1.39 to 11.07 (5.26 ± 3.97) per 100,000 children under the age of 5 years between 1999 and 2008. The ratio of male to female was 1.96 to 1. Ages at onset ranged from 58 days to 14 years. Patients under 5 years of age accounted of 88.73%. The disease occurred throughout the year, but it occurred more frequently in May to July and November. The most common cardiac abnormality was coronary artery dilatation (49.5%). Age at onset and hypoalbuminemia (<30 g/l) were selected for multivariate logistic regression equation. In conclusion, incidences of KD increased in Jilin Province. Age and gender distribution shared similarities with previous reports, and the seasonal distribution was different. Age and lower serum albumin were the most important risk factors of coronary arterial lesions (CAL) in KD. In addition, patients treated with steroids also had a possible heightened risk of contracting CAL

    Stage-variations of anandamide hydrolase activity in the mouse uterus during the natural oestrus cycle

    Get PDF
    Recent studies have demonstrated that the endogenous cannabinoids are important modulators of fertility in mammals. In particular, a role of the endocannabinoid system in early stages of embryo development, oviductal transport of embryos, pregnancy maintenance and labour has been demonstrated in rodents and/or in humans. In the present paper, we report the analysis of FAAH activity and protein content in the mouse uterus as a function of the natural oestrus cycle stages. Variations of FAAH activity are discussed in relationship to changes in sex steroid levels and to the possible action of AEA on remodelling of uterine tissues

    Postherpetic Neuralgia: Role of Gabapentin and Other Treatment Modalities

    Full text link
    Postherpetic neuralgia (PHN) is a chronic and painful condition that may occur after a herpes zoster infection. The frequency of PHN after untreated zoster varies widely. Age is the most important risk factor for development of PHN. The condition occurs in an estimated 50% of patients older than 50 years. The pain of PHN can be severe and debilitating and is frequently associated with allodynia. Although in most patients pain remits within the first year, it may persist for a lifetime. Tricyclic antidepressants (TCAs), topical agents, opioids, and gabapentin, a structural Γ-amino butyric acid (GABA) analogue, are the only agents that have demonstrated efficacy in randomized clinical trials for treatment of both the shooting and the burning form of pain associated with PHN. TCAs are among the most commonly used classes of agents for treating PHN and are effective in a significant proportion of patients. However, various adverse events can limit treatment. These side effects tend to be more acute in the elderly, the population most likely to suffer from PHN. Topical agents have led to mild to moderate improvement in patients with PHN but are usually ineffective as monotherapy for this condition. Until recently, carbamazepine was the only antiepileptic drug evaluated for the treatment of PHN. Over the past few years, however, gabapentin has received increasing attention as a useful treatment for neuropathic pain. Gabapentin lacks significant drug-drug interactions and has a favorable safety profile, which makes it particularly useful for treatment of PHN.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65597/1/j.1528-1157.1999.tb00933.x.pd

    A DNA Sequence Directed Mutual Transcription Regulation of HSF1 and NFIX Involves Novel Heat Sensitive Protein Interactions

    Get PDF
    BACKGROUND: Though the Nuclear factor 1 family member NFIX has been strongly implicated in PDGFB-induced glioblastoma, its molecular mechanisms of action remain unknown. HSF1, a heat shock-related transcription factor is also a powerful modifier of carcinogenesis by several factors, including PDGFB. How HSF1 transcription is controlled has remained largely elusive. METHODOLOGY/PRINCIPAL FINDINGS: By combining microarray expression profiling and a yeast-two-hybrid screen, we identified that NFIX and its interactions with CGGBP1 and HMGN1 regulate expression of HSF1. We found that CGGBP1 organizes a bifunctional transcriptional complex at small CGG repeats in the HSF1 promoter. Under chronic heat shock, NFIX uses CGGBP1 and HMGN1 to get recruited to this promoter and in turn affects their binding to DNA. Results show that the interactions of NFIX with CGGBP1 and HMGN1 in the soluble fraction are heat shock sensitive due to preferential localization of CGGBP1 to heterochromatin after heat shock. HSF1 in turn was found to bind to the NFIX promoter and repress its expression in a heat shock sensitive manner. CONCLUSIONS/SIGNIFICANCE: NFIX and HSF1 exert a mutual transcriptional repressive effect on each other which requires CGG repeat in HSF1 promoter and HSF1 binding site in NFIX promoter. We unravel a unique mechanism of heat shock sensitive DNA sequence-directed reciprocal transcriptional regulation between NFIX and HSF1. Our findings provide new insights into mechanisms of transcription regulation under stress

    Chemically-Induced Cancers Do Not Originate from Bone Marrow-Derived Cells

    Get PDF
    BACKGROUND: The identification and characterization of cancer stem cells (CSCs) is imperative to understanding the mechanism of cancer pathogenesis. Growing evidence suggests that CSCs play critical roles in the development and progression of cancer. However, controversy exists as to whether CSCs arise from bone marrow-derived cells (BMDCs). METHODOLOGY AND PRINCIPAL FINDINGS: In the present study, n-nitrosodiethylamine (DEN) was used to induce tumor formation in female mice that received bone marrow from male mice. Tumor formation was induced in 20/26 mice, including 12 liver tumors, 6 lung tumors, 1 bladder tumor and 1 nasopharyngeal tumor. Through comparison of fluorescence in situ hybridization (FISH) results in corresponding areas from serial tumor sections stained with HandE, we determined that BMDCs were recruited to both tumor tissue and normal surrounding tissue at a very low frequency (0.2-1% in tumors and 0-0.3% in normal tissues). However, approximately 3-70% of cells in the tissues surrounding the tumor were BMDCs, and the percentage of BMDCs was highly associated with the inflammatory status of the tissue. In the present study, no evidence was found to support the existence of fusion cells formed form BMDCs and tissue-specific stem cells. CONCLUSIONS: In summary, our data suggest that although BMDCs may contribute to tumor progression, they are unlike to contribute to tumor initiation.published_or_final_versio

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Anti-cancer activities of allyl isothiocyanate and its conjugated silicon quantum dots

    Get PDF
    Allyl isothiocyanate (AITC), a dietary phytochemical in some cruciferous vegetables, exhibits promising anticancer activities in many cancer models. However, previous data showed AITC to have a biphasic effect on cell viability, DNA damage and migration in human hepatoma HepG2 cells. Moreover, in a 3D co-culture of HUVEC with pericytes, it inhibited tube formation at high doses but promoted this at low doses, which confirmed its biphasic effect on angiogenesis. siRNA knockdown of Nrf2 and glutathione inhibition abolished the stimulation effect of AITC on cell migration and DNA damage. The biological activity of a novel AITC-conjugated silicon quantum dots (AITC-SiQDs) has been investigated for the first time. AITC-SiQDs showed similar anti-cancer properties to AITC at high doses while avoiding the low doses stimulation effect. In addition, AITC-SiQDs showed a lower and long-lasting activation of Nrf2 translocation into nucleus which correlated with their levels of cellular uptake, as detected by the intrinsic fluorescence of SiQDs. ROS production could be one of the mechanisms behind the anti-cancer effect of AITC-SiQDs. These data provide novel insights into the biphasic effect of AITC and highlight the application of nanotechnology to optimize the therapeutic potential of dietary isothiocyanates in cancer treatment

    Xpf and Not the Fanconi Anaemia Proteins or Rev3 Accounts for the Extreme Resistance to Cisplatin in Dictyostelium discoideum

    Get PDF
    Organisms like Dictyostelium discoideum, often referred to as DNA damage “extremophiles”, can survive exposure to extremely high doses of radiation and DNA crosslinking agents. These agents form highly toxic DNA crosslinks that cause extensive DNA damage. However, little is known about how Dictyostelium and the other “extremophiles” can tolerate and repair such large numbers of DNA crosslinks. Here we describe a comprehensive genetic analysis of crosslink repair in Dictyostelium discoideum. We analyse three gene groups that are crucial for a replication-coupled repair process that removes DNA crosslinks in higher eukarya: The Fanconi anaemia pathway (FA), translesion synthesis (TLS), and nucleotide excision repair. Gene disruption studies unexpectedly reveal that the FA genes and the TLS enzyme Rev3 play minor roles in tolerance to crosslinks in Dictyostelium. However, disruption of the Xpf nuclease subcomponent results in striking hypersensitivity to crosslinks. Genetic interaction studies reveal that although Xpf functions with FA and TLS gene products, most Xpf mediated repair is independent of these two gene groups. These results suggest that Dictyostelium utilises a distinct Xpf nuclease-mediated repair process to remove crosslinked DNA. Other DNA damage–resistant organisms and chemoresistant cancer cells might adopt a similar strategy to develop resistance to DNA crosslinking agents
    corecore