16 research outputs found

    Pseudorapidity distributions of charged hadrons in proton-lead collisions at root s(NN)=5:02 and 8.16 TeV

    Get PDF
    The pseudorapidity distributions of charged hadrons in proton-lead collisions at nucleon-nucleon center-of-mass energies root s(NN) = 5.02 and 8.16 TeV are presented. The measurements are based on data samples collected by the CMS experiment at the LHC. The number of primary charged hadrons produced in non-single-diffractive proton-lead collisions is determined in the pseudorapidity range vertical bar eta(lab)vertical bar vertical bar(vertical bar eta cm vertical bar) <0.5 are 17.1 +/- 0.01 (stat) +/- 0.59 (syst) and 20.10 +/- 0.01 (stat) +/- 0.5(syst) at root s(NN) = 5.02 and 8.16 TeV, respectively. The particle densities per participant nucleon are compared to similar measurements in proton-proton, proton-nucleus, and nucleus-nucleus collisions.Peer reviewe

    Genetics of chloroquine-resistant malaria: a haplotypic view

    Full text link

    Search for supersymmetry in events with at least one photon, missing transverse momentum, and large transverse event activity in proton-proton collisions at root s=13TeV

    Get PDF
    Peer reviewe

    Search for supersymmetry in events with at least three electrons or muons, jets, and missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search for new physics is carried out in events with at least three electrons or muons in any combination, jets, and missing transverse momentum. Results are based on the sample of proton-proton collision data produced by the LHC at a center-of-mass energy of 13 TeV and collected by the CMS experiment in 2016. The data sample analyzed corresponds to an integrated luminosity of 35.9 fb−1. Events are classified according to the number of b jets, missing transverse momentum, hadronic transverse momentum, and the invariant mass of same-flavor dilepton pairs with opposite charge. No significant excess above the expected standard model background is observed. Exclusion limits at 95% confidence level are computed for four different supersymmetric simplified models with pair production of gluinos or third-generation squarks. In the model with gluino pair production, with subsequent decays into a top quark-antiquark pair and a neutralino, gluinos with masses smaller than 1610 GeV are excluded for a massless lightest supersymmetric particle. In the case of bottom squark pair production, the bottom squark masses are excluded up to 840 GeV for charginos lighter than 200 GeV. For a simplified model of heavy top squark pair production, the t ˜ 2mass is excluded up to 720, 780, or 710 GeV for models with an exclusive t ˜ 2→ t ˜ 1H decay, an exclusive t ˜ 2→ t ˜ 1Z decay, or an equally probable mix of those two decays. In order to provide a simplified version of the analysis for easier interpretation, a small set of aggregate signal regions also has been defined, providing a compromise between simplicity and analysis sensitivity.[Figure not available: see fulltext.]

    Measurement of top quark polarisation in t-channel single top quark production

    No full text

    Search for top squarks decaying via four-body or chargino-mediated modes in single-lepton final states in proton-proton collisions at <tex>\sqrt{s}$</tex>=13 TeV

    No full text
    corecore