1,561 research outputs found

    The deconfinement transition of finite density QCD with heavy quarks from strong coupling series

    Get PDF
    Starting from Wilson's action, we calculate strong coupling series for the Polyakov loop susceptibility in lattice gauge theories for various small N_\tau in the thermodynamic limit. Analysing the series with Pad\'e approximants, we estimate critical couplings and exponents for the deconfinement phase transition. For SU(2) pure gauge theory our results agree with those from Monte-Carlo simulations within errors, which for the coarser N_\tau=1,2 lattices are at the percent level. For QCD we include dynamical fermions via a hopping parameter expansion. On a N_\tau=1 lattice with N_f=1,2,3, we locate the second order critical point where the deconfinement transition turns into a crossover. We furthermore determine the behaviour of the critical parameters with finite chemical potential and find the first order region to shrink with growing \mu. Our series moreover correctly reflects the known Z(N) transition at imaginary chemical potential.Comment: 18 pages, 7 figures, typos corrected, version published in JHE

    Anomaly and a QCD-like phase diagram with massive bosonic baryons

    Full text link
    We study a strongly coupled Z2Z_2 lattice gauge theory with two flavors of quarks, invariant under an exact SU(2)×SU(2)×UA(1)×UB(1)\mathrm{SU}(2)\times \mathrm{SU}(2) \times \mathrm{U}_A(1) \times \mathrm{U}_B(1) symmetry which is the same as QCD with two flavors of quarks without an anomaly. The model also contains a coupling that can be used to break the UA(1)\mathrm{U}_A(1) symmetry and thus mimic the QCD anomaly. At low temperatures TT and small baryon chemical potential μB\mu_B the model contains massless pions and massive bosonic baryons similar to QCD with an even number of colors. In this work we study the TμBT-\mu_B phase diagram of the model and show that it contains three phases : (1) A chirally broken phase at low TT and μB\mu_B, (2) a chirally symmetric baryon superfluid phase at low TT and high μB\mu_B, and (3) a symmetric phase at high TT. We find that the nature of the finite temperature chiral phase transition and in particular the location of the tricritical point that seperates the first order line from the second order line is affected significantly by the anomaly.Comment: 22 pages, 16 figures, 5 tables, references adde

    Serum amyloid A primes microglia for ATP-dependent interleukin-1\u3b2 release

    Get PDF
    Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves production of acute-phase proteins, including serum amyloid A (SAA). Interleukin-1\u3b2 (IL-1\u3b2), a master regulator of neuroinflammation produced by activated inflammatory cells of the myeloid lineage, in particular microglia, plays a key role in the pathogenesis of acute and chronic diseases of the peripheral nervous system and CNS. IL-1\u3b2 release is promoted by ATP acting at the purinergic P2X7 receptor (P2X7R) in cells primed with toll-like receptor (TLR) ligands

    To respond or not to respond - a personal perspective of intestinal tolerance

    Get PDF
    For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research

    A Measurement of Rb using a Double Tagging Method

    Get PDF
    The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal

    Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP

    Full text link
    Using the OPAL detector at LEP, the running of the effective QED coupling alpha(t) is measured for space-like momentum transfer from the angular distribution of small-angle Bhabha scattering. In an almost ideal QED framework, with very favourable experimental conditions, we obtain: Delta alpha(-6.07GeV^2) - Delta alpha(-1.81GeV^2) = (440 pm 58 pm 43 pm 30) X 10^-5, where the first error is statistical, the second is the experimental systematic and the third is the theoretical uncertainty. This agrees with current evaluations of alpha(t).The null hypothesis that alpha remains constant within the above interval of -t is excluded with a significance above 5sigma. Similarly, our results are inconsistent at the level of 3sigma with the hypothesis that only leptonic loops contribute to the running. This is currently the most significant direct measurment where the running alpha(t) is probed differentially within the measured t range.Comment: 43 pages, 12 figures, Submitted to Euro. Phys. J.

    Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices

    Get PDF
    The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008

    liver-enriched gene 1a and 1b Encode Novel Secretory Proteins Essential for Normal Liver Development in Zebrafish

    Get PDF
    liver-enriched gene 1 (leg1) is a liver-enriched gene in zebrafish and encodes a novel protein. Our preliminary data suggested that Leg1 is probably involved in early liver development. However, no detailed characterization of Leg1 has been reported thus far. We undertook both bioinformatic and experimental approaches to study leg1 gene structure and its role in early liver development. We found that Leg1 identifies a new conserved protein superfamily featured by the presence of domain of unknown function 781 (DUF781). There are two copies of leg1 in zebrafish, namely leg1a and leg1b. Both leg1a and leg1b are expressed in the larvae and adult liver with leg1a being the predominant form. Knockdown of Leg1a or Leg1b by their respective morpholinos specifically targeting their 5′-UTR each resulted in a small liver phenotype, demonstrating that both Leg1a and Leg1b are important for early liver development. Meanwhile, we found that injection of leg1-ATGMO, a morpholino which can simultaneously block the translation of Leg1a and Leg1b, caused not only a small liver phenotype but hypoplastic exocrine pancreas and intestinal tube as well. Further examination of leg1-ATGMO morphants with early endoderm markers and early hepatic markers revealed that although depletion of total Leg1 does not alter the hepatic and pancreatic fate of the endoderm cells, it leads to cell cycle arrest that results in growth retardation of liver, exocrine pancreas and intestine. Finally, we proved that Leg1 is a secretory protein. This intrigued us to propose that Leg1 might act as a novel secreted regulator that is essential for liver and other digestive organ development in zebrafish

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore