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Abstract

Starting from Wilson’s action, we calculate strong coupling series for the

Polyakov loop susceptibility in lattice gauge theories for various small Nτ in

the thermodynamic limit. Analysing the series with Padé approximants, we es-

timate critical couplings and exponents for the deconfinement phase transition.

For SU(2) pure gauge theory our results agree with those from Monte-Carlo sim-

ulations within errors, which for the coarser Nτ = 1, 2 lattices are at the percent

level. For QCD we include dynamical fermions via a hopping parameter expan-

sion. On a Nτ = 1 lattice with Nf = 1, 2, 3, we locate the second order critical

point where the deconfinement transition turns into a crossover. We furthermore

determine the behaviour of the critical parameters with finite chemical potential

and find the first order region to shrink with growing µ. Our series moreover

correctly reflects the known Z(N) transition at imaginary chemical potential.
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1 Introduction

Lattice Monte Carlo studies of the QCD phase diagram at finite temperature are still

difficult for realistic quark masses, and at finite baryon density are beset by the sign-

problem. Despite the progress made in the last few years in circumventing these obsta-

cles, such calculations still suffer severe restrictions. In particular, presently available

methods are reliable only for small quark chemical potentials, µ<∼T [1]. These diffi-

culties motivate the search for alternative ways to learn about the phase diagram. A

popular choice is to consider lattice QCD in the strong coupling limit and to study

its phase diagram either by analytic mean field methods [2] or indeed by Monte Carlo

evaluation of the strongly coupled theory [3],[4], since the sign problem in this case is

much milder. In the early days of lattice gauge theory, strong coupling expansions for

zero temperature Yang-Mills theory have led to some analytical insights into field the-

ories on a lattice ([5],[6] and [7] for a review). They have also been used to investigate

finite temperature effects [8]-[13] with reasonable qualitative predictions, but mostly

using the crude approximation of neglecting spatial plaquettes altogether, cf. [14] and

references therein for a review of early investigations. However, the strong coupling

limit is far from the physical continuum theory and the lessons learned in this way are

qualitative at best. There have also been attempts to go beyond the strong coupling

limit [15]-[19], mostly in mean field theory.

In this paper we address the question whether it is possible to make predictions for

the location and nature of the deconfinement phase transition more quantitative by

taking corrections into account, and we can answer in the affirmative. In previous

work [20] we have already shown for SU(2) Yang-Mills theory that it is quite possible

to include spatial plaquettes and to obtain series of several orders. For lattices with

temporal extent Nτ = 1 − 4, this lead to satisfactory quantitative results for the

equation of state up to the phase transition region. However, while the determination

of the critical parameters was consistent with Monte Carlo results and universality

arguments, it remained rather imprecise quantitatively. Here we considerably improve

on this by using the Polyakov loop susceptibility as an observable, rather than the free

energy. At a second order phase transition in infinite volume, this observable develops

a singularity which is well modelled by Padé approximants to its series expansion, thus

allowing to extract the critical coupling and exponent in satisfactory agreement with

numerical results from [21],[22],[23].

After a successful test of our method for SU(2) Yang-Mills theory, we study the

case of SU(3) QCD with Wilson quarks by a combined strong coupling and hopping

parameter expansion, which converges for sufficiently heavy quarks. In the infinite
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Figure 1: Schematic overview of the Nf = 2+1 QCD phase diagram. Here we compute

the critical line for heavy quarks.

quark mass limit, QCD is known to display a first order phase transition which weakens

as quark masses are lowered, see Fig. 1. The location of the critical quark mass, where

the transition disappears at a second order critical point, has been studied for Nf = 1

by a combination of numerical simulations of QCD and the 3d 3-state Potts model

[24, 25], which is the appropriate effective theory for the critical transition. These

works also established the 3d Ising universality of the boundary line. Our methods

allow for a determination of the critical quark mass for Nf = 1, 2, 3, as well as the

dependence of the critical quark mass on quark chemical potential. We find that the

critical mass grows with increasing chemical potential, in accord with a Monte Carlo

study in the Potts model with finite chemical potential [26]. However, our result is the

first based on full QCD beyond mean field theory.

2 Phase transitions from strong coupling series

2.1 Notation and formalism

We work on a (3+1)-dimensional hypercubic lattice with lattice spacing a and infinite

spatial volume. The temporal lattice extent Nτ is kept finite, which in combination

with (anti-)periodic boundary conditions for (fermionic) bosonic fields generates a non-

vanishing physical temperature,

T =
1

Nτa
. (1)
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Using Wilson’s gauge action for SU(N), the partition function reads

Z =

∫

[dU ] exp (−Sg) =

∫

[dU ]
∏

p

exp

[

β

2N

(

trUp + trU †
p

)

]

. (2)

In order to locate the phase transition we consider the Polyakov loop susceptibility

χL = V
(

〈L2〉 − 〈L〉2
)

, (3)

where we have defined the Polyakov loop L
x
and its spatial average L as

L
x

= trW
x
= tr

Nτ
∏

τ=1

U0(x, τ), (4)

L =
1

V

∑

x

(

L
x
+ L†

x

)

SU(N ≥ 3)

L =
1

V

∑

x

L
x

SU(2). (5)

If we couple the Polyakov loop to an external source J in the action1,

− S(J) =
β

2N

∑

p

(

trUp + trU †
p

)

+ J
∑

x

(

L
x
+ L†

x

)

, (6)

we can express the susceptibility as

χL =
1

V

∂2

∂J2
lnZ(J)

∣

∣

∣

∣

J=0

. (7)

In order to obtain a strong coupling series for Eq. (7), we expand the partition

function

Z(J) =

∫

[dU ]

[

∏

p

exp

(

β

2N

(

trUp + trU †
p

)

)

][

∏

x

exp

(

J
(

trW
x
+ trW †

x

)

)

]

(8)

in terms of characters

exp

(

β

2N

(

trUp + trU †
p

)

)

=

[

1 +
∑

r 6=0

drar (β)χr(Up)

]

(9)

exp

(

J
(

trW
x
+ trW †

x

)

)

= c0(J)

[

1 +
∑

r 6=0

br(J)χr(Wx
)

]

. (10)

1 For SU(3) we have chosen L as the real part of the Polyakov loop, so we get a real action with

only one real source J
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Figure 2: Examples for Nτ = 4. Left: Two Polyakov loops and Nτ plaquettes wind

around the temporal dimension. Right: The first correction with additional plaquettes.

We have neglected the prefactor c0(β) of the trivial representation because it does not

depend on J and vanishes in Eq. (7). As usual in strong coupling expansions, we will

use the coefficient u = af of the fundamental representation as expansion parameter.

In the case of SU(2) we have no complex conjugate representations and the partition

function reads

Z(J) =

∫

[dU ]

[

∏

p

exp

(

β

2
trUp

)

][

∏

x

exp

(

J trW
x

)

]

. (11)

Furthermore, there are closed form expressions for the expansion coefficients in this

case,

aj (β) =
I2j+1(β)

I1(β)
, (12)

bj(J) =
djI2j+1(2J)

I1(2J)
, (13)

c0(J) =
I1(2J)

J
. (14)

Applying a cluster expansion as described in [27], the logarithm of the partition

function can be represented as a sum of graphs Φ(C)

1

V
lnZ(J) = ln c0(J) +

∑

C

Φ(C). (15)

The sum is over all clusters C of connected polymers, see [20] for details. The leading

order, i.e. the strong coupling limit β = 0, is obtained by neglecting all graphs giving

the trivial result

χL =
∂2

∂J2
ln c0(J)

∣

∣

∣

∣

J=0

= 1 +O(uNτ ) SU(2)

χL =
∂2

∂J2
ln c0(J)

∣

∣

∣

∣

J=0

= 2 +O(uNτ ) SU(N ≥ 3). (16)

In case of SU(N ≥ 3) the factor of 2 accounts for both fundamental representations.
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The first graph with a non-trivial u-dependence is shown in Fig. 2, together with the

leading correction graph. The left and the right boundaries of these graphs are meant

to be identified due to the periodic boundary conditions. To calculate the contribution

of these graphs, we employ the group integration formula
∫

dUχr(U)χs(U
†) =

δrs
dr

, (17)

and get

Φ0 = 3uNτ
(

b1/2(J)
)2

SU(2),

Φ0 = 6uNτ (bf (J))
2 SU(N ≥ 3), (18)

for the leading non-trivial order and

Φ1 = 12Nτu
Nτ+4

(

b1/2(J)
)2

SU(2),

Φ1 = 24Nτu
Nτ+4 (bf (J))

2 SU(N ≥ 3). (19)

for the first correction.

2.2 Graphical expansion

From Eq. (7) it is obvious that we solely have to take into account graphs which

contribute to order J2. This means that only graphs with two Polyakov loops in

the fundamental or one loop in the adjoint representation are allowed. For the first

possibility, the loops have to be on different lattice sites. The generation of contributing

graphs is not uniform and we distinguish between small, intermediate and large Nτ .

Large Nτ : Large Nτ receive only contributions from nearest-neighbour Polyakov

loops as shown in Fig. 2, and corrections from adding plaquettes. Of course, this

statement is only true for large enough Nτ if we calculate to some fixed order in u.

Small Nτ : The smallest possible Nτ is 1. Typical graphs are shown in Fig. 3. These

graphs are meant to be spatial projections of graphs like in Fig. 2 (left). In higher

orders we get contributions from additional spatial plaquettes, e.g. by filling the cross-

section of the self-avoiding polygons, but these contributions are small compared to

the increasing number of self-avoiding walks.

Intermediate Nτ : For intermediate Nτ (=2,3,4...) we have to take into account

graphs of both types. There are also some other corrections as shown in Fig. 4. Thus

these Nτ are the most labour-intensive ones.
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Figure 3: Left: Self avoiding walks with two fundamental Polyakov loops. Right: Self

avoiding polygons with one adjoint or two fundamental Polyakov loop.
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Figure 4: Examples of corrections to self avoiding walks of length L = 2 and Nτ = 4.

2.3 Series analysis and phase transitions

Strong coupling expansions have a finite radius of convergence. Expanding about β = 0,

a true deconfinement phase transition at some critical value of βc clearly represents an

upper bound on the convergence radius, i.e. strong coupling analyses are limited to

the confined region. Nevertheless, knowledge of the series coefficients allows us to

estimate the location of a singularity along the real β-axis. Our analysis is well suited

to detect second order phase transitions and exploits the fact that the Polyakov loop

susceptibility in this case diverges with a critical exponent. Near a critical coupling

the Polyakov loop susceptibility and its logarithmic derivative behave like

χL ∼
1

(uc − u)γ
, Dχ(u) ≡

d

du
ln (χL) ∼

γ

(uc − u)
. (20)

From our series expansions we know Dχ(u) as a polynomial in u and can model its

pole-like singularity by Padé approximants

[L,M ](u) ≡
a0 + a1u+ · · ·+ aLu

L

1 + b1u+ · · ·+ bMuM
. (21)

In order to uniquely determine the coefficients ai, bi, it is necessary to have L+M ≤ N ,

if N represents the highest available order of the expansion. In this way a [L,M ]

approximant is correct up to but not including O(uL+M+1) and larger approximants

represent more expansion coefficients than smaller ones. In particular, the critical

coupling uc is given as the real positive zero of the denominator closest to the origin,

the critical exponent γ is obtained from the corresponding residuum.

The analysis can be made more powerful if either independent results for the critical

couplings are available, or the universality class of the transition is known. In the first
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case, it is possible to get better estimates for the critical exponents via

(uc − u)Dχ(u) = γ +O(uc − u), (22)

which is the more precise the better we know uc. In order to do so, we calculate Padé

approximants to the series expansion of (uc−u)Dχ(u) and evaluate them at the known

critical coupling uc. In the same way we can use a known value γ to get more accurate

estimates for the critical coupling

(χL)
1

γ ∼
1

(uc − u)
. (23)

Here we calculate Padé approximants to (χL)
1

γ and solve for zeros of the denominator,

as this quantity has a simple pole at the critical coupling. For a more detailed discussion

of these topics, see [28].

3 SU(2) Yang-Mills

3.1 Results for the series

We first apply our analysis method to SU(2) pure gauge theory, where we have rea-

sonably long series for Nτ = 1− 4 and where accurate Monte Carlo data are available

for comparison. We obtain the following strong coupling series for χL(Nτ , u):

χL(1, u) = 1 + 6 u+ 30 u2 + 150 u3 + 738 u4 + 3622 u5 +
52982

3
u6 +

+
773434

9
u7 +

11239612

27
u8 +O

(

u9
)

,

χL(2, u) = 1 + 6 u2 + 30 u4 + 222 u6 + 1218 u8 +
24602

3
u10 +O

(

u12
)

,

χL(3, u) = 1 + 6 u3 + 30 u6 + 72 u7 + 72 u8 + 78 u9 + 576 u10 + 1776 u11 +

+1770 u12 +O
(

u13
)

,

χL(4, u) = 1 + 6 u4 + 126 u8 + 48 u10 + 2830 u12 +
91808

135
u14 +O

(

u16
)

. (24)

Nτ = 1 corresponds to the largest lattice spacing and thus to the largest bare coup-

ling at the deconfinement transition. Hence, our series shows the best convergence

behaviour in this case.
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Padé uc βc γ

[5, 2] 0.21055 0.86825 1.167

[3, 3] 0.20967 0.86439 1.138

[4, 2] 0.20957 0.86396 1.146

[2, 4] 0.20987 0.86527 1.135

[3, 2] 0.20927 0.86264 1.126

[2, 2] 0.20820 0.85796 1.102

Mean 0.2095(12) 0.864(5) 1.14(3)

Table 1: Critical coupling and exponent for Nτ = 1, estimated from different Padé

approximants.

3.2 The critical parameters

We consider only Padés [L,M ] with L,M > 2 in order to have large enough polynomials

in both numerator and denominator. So-called defective approximants with an adjacent

zero-pole pair, indicated by a small residuum (we chose Res < 0.003 to be defective),

are also ignored. By doing so we obtain estimates for the critical parameters as shown

in Table 1. In the last line we have averaged over the estimates from different Padés

in order to quantify the systematic error associated with the choice of a particular

approximant. Note that the quoted error is estimated as (βmax
c −βmin

c )/2, and similarly

for the exponent. It is only due to the scatter in the singularity structure of different

Padé approximants and does not include the error from the truncation of the series,

i.e. it likely underestimates the true error.

Our result for a Nτ = 1 lattice then is βc = 0.864(5), γ = 1.14(3). There exist

different values for the critical coupling from Monte Carlo simulations in the literature:

βc = 0.8730(2) from [21] and the more recent βc = 0.85997(10) or 0.86226(6) from [23].

At first sight our results appear to favour one of the latter, but with a critical exponent

deviating about 10% from universality. While the Padé approximants accumulate

a pole and thus definitely predict a second order phase transition, the residuum is

somewhat below the value γI = 1.2373(2) [29] for a 3d Ising transition. Note however

the upward trend in the critical coupling as well as in the exponent with increasing

order L + M of the approximants in Table 1. This indicates that the results are not

yet fully stable and the exponent should reach the Ising value with longer series.

It is apparent that we have gained considerable accuracy compared to previous

work using the free energy and its derivatives as observables [20], which gives βc =

0.92(15), α = 0.063(38) (α = 0.1096(5) for 3d Ising [29]). The reason for this improve-

8



Padé uc βc

[6, 2] 0.21221 0.87553

[4, 3] 0.21159 0.87281

[2, 5] 0.21138 0.87189

[3, 3] 0.21229 0.87588

[2, 4] 0.21238 0.87628

[4, 2] 0.21279 0.87808

[3, 2] 0.20986 0.86523

[2, 3] 0.21464 0.88621

[2, 2] 0.21495 0.88757

Padé γ1 γ2

[3, 4] 1.1250 1.2378

[4, 3] 1.1244 1.2331

[2, 5] 1.1246 1.2157

[5, 2] 1.1244 1.2208

[3, 3] 1.1225 1.2579

[2, 4] 1.1236 1.2661

[4, 2] 1.1244 1.2950

[3, 2] 1.1240 1.2308

[2, 3] 1.1238 1.2215

Table 2: Biased critical couplings and exponents for Nτ = 1.

ment is twofold: the Polyakov loop susceptibility permits an easier evaluation of more

coefficents, e.g. by featuring both even and odd powers of u, and the series itself comes

with only positive coefficients and is better behaved than that for the free energy.

It is now interesting to explore how one can combine Monte Carlo and series results.

Thus we consider biased estimates, which should be more accurate. Using γI = 1.237,

we get the results shown in Table 2. We calculate the average of βc to be βc = 0.877(11)

using all Padés and βc = 0.875(3) using only the three highest orders which behave

more smoothly. Despite the fact that the total error is underestimated, both estimates

are consistent with the Monte Carlo result of [21].

In order to obtain the biased critical exponent, we used the values β1 = 0.86226 and

β2 = 0.873. The former gives a mean critical exponent of γ1 = 1.124(1) and the latter

γ2 = 1.24(4). Although the first result is much more stable, it is the second one which

is consistent with universality. Hence we conclude that it is the value βc = 0.8730(2)

of [21], which is supported by our series expansions.

For intermediate Nτ our results become less precise the larger we choose Nτ . This is

to be expected since βc grows on finer lattices and we are leaving the strong coupling

regime. Thus we only give our biased estimates, using the Monte Carlo results βc(Nτ =

2) = 1.87348, βc(Nτ = 3) = 2.1768, βc(Nτ = 4) = 2.2993 [22],[23] and γI = 1.237. We

summarise our results in Table 3 and observe that the predicted quantities are fully

consistent with Monte Carlo results and universality.
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Nτ γI γ No. of Padés βMC
c βc No. of Padés

2 1.237 1.21(2) 5 1.87348(2) 1.87(1) 6

3 1.237 1.29(18) 2 2.1768(30) 2.13(4) 6

4 1.237 1.22(20) 3 2.2993(3) 2.23(11) 7

Table 3: Comparison of our findings, γ, βc, with the values from universality and

simulations.

4 SU(3) and QCD

For SU(3) Yang-Mills theory, there is a first order phase transition, i.e. the correlation

length remains finite even at the critical temperature, spoiling our analysis method

which requires scaling behaviour. We therefore introduce heavy dynamical quarks,

which have a critical mass mc where the transition turns second order, cf. Fig. 1. It is

this point which we now try to locate.

4.1 Combined strong coupling and hopping expansion

We introduce dynamical quarks in leading order hopping parameter expansion (see [27]

for details), where the quark part of the action reads

Sq =
∑

l

κl

l
trM [U ]l, κ =

1

2m+ 8
, (25)

m is the quark mass and M [U ] the quark hopping matrix

M [U ]yx =
∑

µ

δy,x+µ̂(1 + γµ)Uxµ. (26)

The sum in Eq. (25) extends over all closed paths on the lattice. For small temporal

lattice sizes and finite temperature the leading order hopping expansion term is just

the Polyakov loop trW
x
. Chemical potential is introduced in the usual way as factors

exp(±µ) to the temporal link variables [30]. The effective quark part of the action for

small temporal lattice extents then reads

− Seff
q =

∑

x

[

h(κ)eµ trW
x
+ h(κ)e−µ trW †

x

]

, (27)

where the relative minus sign compared to Eq. (25) is due to the antiperiodic boundary

conditions for fermions. The parameter h(κ) depends on the hopping parameter κ and
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the number of degenerate quark flavours Nf via

h(κ) = 2Nf(2κ)
Nτ . (28)

For µ 6= 0 the action is complex.

Introducing Polyakov loop source terms J and putting everything together, we obtain

the following partition function

Z =

∫

[dU ] exp

[

β

6

∑

p

(

trUp + trU †
p

)

+
∑

x

{

[

heµ + J
]

trW
x
+
[

he−µ + J
]

trW †
x

}

]

. (29)

Now we can proceed in the same way as in case of SU(2) and rewrite the partition

function with two different character expansions and omit the factor c0(β)

Z =

∫

[dU ]
∏

p

[

1 +
∑

r 6=0

drar(β)χr(Up)

]

×
∏

x

c0(h, µ, J)

[

1 +
∑

r 6=0

br(h, µ, J)χr(Wx
)

]

. (30)

Note that for non-vanishing chemical potential µ the expansion parameters br
(

h, µ, J
)

are different for complex conjugate representations r and r̄ and related via

br
(

h, µ, J
)

= br̄
(

h,−µ, J
)

. (31)

The expansion coefficients itself can be expressed as series expansions, e.g.

u ≡ af(β) =
1

18
β + . . . ,

c0(h, µ, J) = 1 +
(

heµ + J
)(

he−µ + J
)

+ . . . ,

bf (h, µ, J) = heµ + J + . . . . (32)

In order to get the proper series expansion we now have to draw all possible diagrams

to a given order in u and the number of Polyakov loops l. In contrast to our SU(2)

calculation we have to take into account not only the graphs with two Polyakov loop

source terms, but all graphs with contributions of the order J2hm, since these give

finite results after differentiating twice with respect to J and setting J = 0. Some

examples of graphs for the case Nτ = 1 are given in Fig. 5. An important fact is that

for a given order in u, there is only a finite number of graphs. For the order un, we

can have only graphs fulfilling l ≤ 2n, as inspection of the series shows. Additional

terms in the hopping expansion will modify the br’s and rapidly increase the number

of relevant graphs.
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Figure 5: Examples of terms with a larger number of Polyakov loop source terms.

4.2 Result for the series

We have derived the series expansion of the Polyakov loop susceptibility up to orders

unhm, with n+m ≤ 6. The result for the Nτ = 1 series, arranged in increasing orders

of u, reads

χL(u, h) =

[

1 + ch+

(

−
4

3
c3 +

1

2
c

)

h3 +

(

−
5

3
c4 +

4

3
c2 −

7

24

)

h4

+

(

2

15
c5 +

1

3
c3 −

1

8
c

)

h5 +

(

28

15
c6 −

7

5
c4 −

7

120
c2 +

119

720

)

h6

]

+

[

6 + 18ch+
(

6c2 + 3
)

h2 +
(

−40c3 + 15c
)

h3

+

(

−90c4 + 66c2 −
69

4

)

h4 +

(

−
32

5
c5 − 8c3 + 6c

)

h5

]

u

+

[

30 + 180ch+
(

144c2 + 72
)

h2 +
(

−760c3 + 285c
)

h3

+

(

−
5985

2
c4 +

8985

4
c2 −

4485

8

)

h4

]

u2

+

[

150 + 1470ch+

(

4113

2
c2 +

4113

4

)

h2

+
(

−6856c3 + 2571c
)

h3

]

u3

+

[

786 + 10752ch+

(

1131747

32
c2 +

1088547

64

)]

u4

+

[

4011 + 73521ch

]

u5 +
152247

8
u6, (33)

where we used the abbreviation c ≡ cosh(µ). Since the only µ-dependence appears

in cosh(µ) terms, one can immediately see that the Polyakov loop susceptibility is

invariant under µ ↔ −µ as it should be according to the charge conjugation symmetry

of QCD.

4.3 Critical point for µ = 0

In order to locate the critical point (βc, κc)(µ) we have to adjust our analysis methods

to multiple variables. For a given number of flavours, the schematic phase diagram is
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Figure 6: Left: Schematic phase diagram in the variables (u, h) of the series Eq. (33).

Right: Poles of different Padé approximants (red:[1,3], blue:[0,2], green:[0,3], pur-

ple:[1:2]) accumulate for a slope parameter n = 0.730 at the critical point uc = 0.126.

shown in Fig. 6. Our expansion is performed about (u, h) = (0, 0) and we now approach

the critical point along some straight line starting at the origin,

u = n · t,

h =
1

n
· t, (34)

whose slope is tuned by n and t parametrises the distance from the critical point. We

then expect a scaling behaviour

χL(t) ∼
1

(tc − t)λ
, (35)

with some critical exponent λ. The critical point is in the 3d Ising universality class,

but we do not know the scaling fields and variables. The Polyakov loop in general

mixes contributions from both energy-like and magnetic field-like variables. When

approaching the critical point along a straight line from the origin, the larger exponent

will dominate and in case of 3d Ising universality this is γ.

Our strategy now is to vary n and calculate DLog-Padés and singularities for each

value. If the axis misses the critical point, there is no scaling behaviour and we expect

any real poles in t, and hence in u, of the Padé approximants to be widely scattered.

As the critical point is approached, these poles accumulate in a narrow window, as in

our SU(2) study, cf. Fig. 6. Thus, we estimate tc as the mean value over all Padé

singularities evaluated at that n for which its standard deviation is minimal. As an

error estimate we take the larger one of those two values, where the standard deviation

is 1.5 times its minimum. With this method we find for µ = 0

n = 0.730(16), tc = 0.172(4), λ = 1.03(3). (36)

13



Let us note that the standard deviations for both t and λ reach their minimum for the

same slope parameter n. The critical exponent obtained with this method again under-

estimates γ compared to the Ising exponent. Judging from our experience with SU(2),

we associate this with the truncation of the strong coupling series. From Eq. (34) we

obtain

uc = 0.126(1), hc = 0.236(11). (37)

To get more accurate results, we now employ biasing with the 3d Ising exponent

γ = 1.237, which leads to the improved values

uc = 0.131(1) → βc = 2.03(2) hc = 0.249(13). (38)

Note that, to leading order in the hopping expansion, βc does not depend on Nf .

Inverting Eq. (28) in case of µ = 0 we find

κ =
1

2

(

h

2Nf

)
1

Nτ

. (39)

This leads to the following results for κc(Nf ) on a Nτ = 1 lattice

Nf = 1 : κc = 0.062(4),

Nf = 2 : κc = 0.031(2),

Nf = 3 : κc = 0.021(1). (40)

For these small values our leading order in the hopping expansion should be an excellent

approximation. This further justifies use of the relation [9]

κ =
1

2
e−ma, (41)

which is valid for heavy quarks, to obtain the critical quark masses as

Nf = 1 : mc/T = 2.08(7),

Nf = 2 : mc/T = 2.78(7),

Nf = 3 : mc/T = 3.17(10). (42)

The relative size is consistent with qualitative expectations. Since the presence of finite

mass quarks weakens the first order transition, more flavours of quarks should have a

stronger effect and thus a larger critical quark mass.
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4.4 Critical point for µ 6= 0

Next we turn on a chemical potential. Eq. (33) has already been obtained for finite

chemical potential, all we have to do is to repeat the same steps to search for singu-

larities as described in the previous analysis. Of particular interest is the movement of

the critical masses mc with µ. We have calculated this function for the case of Nf = 3

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

-1.5 -1 -0.5  0  0.5  1

m
c

(µ/T)2

Figure 7: The critical mass mc(µ
2) for Nf = 3, Nτ = 1 as a function of real and imag-

inary chemical potential. Error bars are obtained with the same method as described

before Eq. (36).

at several points, Fig. 7. The critical masses grow with real µ, i.e. the first order region

is shrinking. For small µ we performed a fit to a low order polynomial to get a rough

picture of the behaviour of the signs of the different coefficients,

mc(µ
2) = 3.18 + 0.94(1)µ2 − 0.34(1)µ4 + 0.037(18)µ6 + . . . , (43)

where the errors are those of the fitting procedure. The shrinking of the first order

region, and in particular the positive curvature of the critical surface as well as the

alternating signs are in accord with the findings of a Monte Carlo investigation of

the Potts model [26]. To leading order hopping expansion different Nf only shift the

constant term in Eq. (43).

The alternating signs indicate a convergence limiting singularity on the negative µ2

axis, i.e. at imaginary chemical potential. Thus it is interesting to continue mc(µ
2) also

to negative values of the argument, by setting µ → iµ. In Eq. (33), this means that

c now abbreviates cos(µ) instead of cosh(µ). The corresponding curve is also shown

in Fig. 7. We observe a minimum at about µ2 ≃ −0.85 and rapidly increasing errors

with more negative µ2. We interpret this as the point where the singularity is located.
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This is fully consistent with the Roberge-Weiss Z(N) transition point in the imaginary

direction, which is known exactly to be at µ2 = −π2/9 ≃ −1.1 [31].

5 Conclusions

We have explored the feasibility of calculating the critical couplings and exponents of

the deconfinement transition of lattice QCD by means of analytically computed strong

coupling series, using the Polyakov loop susceptibility as an observable. Our treatment

is purely analytical and goes beyond mean field theory. Tables 2, 3, Eq. (42) and Fig. 7

contain our main results. For SU(2) Yang-Mills theory on Nτ = 1 − 4 lattices, our

results are fully consistent with numerical values from Monte Carlo simulations. In

the cases Nτ = 1, 2 we were able to reproduce these values nearly exactly with an

accuracy of a few percent, for Nτ = 3, 4 the results agree within increasing error bars.

For Nτ > 4 the strong coupling series to the computed length becomes unpredictive,

at least for our observable. A similar conclusion was drawn in [15].

In case of SU(3) with heavy quarks we performed a strong coupling expansion in

the effective action to leading order hopping expansion. Analysis of the Nτ = 1 series

allowed to extract the critical quark massmc(µ), for which the first order deconfinement

transition goes critical before turning into a crossover. We find the first order transition

region to shrink with increasing chemical potential. This is consistent with the findings

from mean field theory [11] and a Monte Carlo simulation of the effective theory with

the same global symmetries, the 3-state Potts model in 3 dimensions [26]. The latter is

the appropriate effective model also for continuum QCD. Since our series furthermore

correctly reflects the presence of the Z(N) transition in the direction of imaginary

chemical potential, this would suggest that the qualitative phase structure is correctly

represented on lattices as coarse as Nτ = 1.

We conclude that strong coupling expansions are able to provide qualitative and,

on coarse lattices, quantitative information about the phase structure of lattice QCD

beyond mean field theory and the strong coupling limit, which easily extend to finite

baryon density. While the location of phase transitions in the parameter space is subject

to renormalisation in the continuum limit, the presence of critical lines or surfaces is

guaranteed by universality to survive in the continuum limit. This strongly motivates

further studies to extend our analyses to finer lattices and to the light quark regime.
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