22 research outputs found
Viruses as co-factors for the initiation or exacerbation of lung fibrosis
Idiopathic pulmonary fibrosis (IPF) remains exactly that. The disease originates from an unknown cause, and little is known about the mechanisms of pathogenesis. While the disease is likely multi-factorial, evidence is accumulating to implicate viruses as co-factors (either as initiating or exacerbating agents) of fibrotic lung disease. This review summarizes the available clinical and experimental observations that form the basis for the hypothesis that viral infections may augment fibrotic responses. We review the data suggesting a link between hepatitis C virus, adenovirus, human cytomegalovirus and, in particular, the Epstein-Barr gammaherpesvirus, in IPF. In addition, we highlight the recent associations made between gammaherpesvirus infection and lung fibrosis in horses and discuss the various murine models that have been used to investigate the contribution of gammaherpesviruses to fibrotic progression. We review the work demonstrating that gammaherpesvirus infection of Th2-biased mice leads to multi-organ fibrosis and highlight studies showing that gammaherpesviral infections of mice either pre- or post-fibrotic challenge can augment the development of fibrosis. Finally, we discuss potential mechanisms whereby viral infections may amplify the development of fibrosis. While none of these studies prove causality, we believe the evidence suggests that viral infections should be considered as potential initiators or exacerbating agents in at least some cases of IPF and thereby justify further study
Emergent niche structuring leads to increased differences from neutrality in species abundance distributions
Species abundance distributions must reflect the dynamic processes involved in community assembly, but whether and when specific processes lead to distinguishable signals is not well understood. Biodiversity and species abundances may be shaped by a variety of influences, but particular attention has been paid to competition, which can involve neutral dynamics, where competitor abundances are governed only by demographic stochasticity and immigration, and dynamics driven by trait differences that enable stable coexistence through the formation of niches. Key recent studies of the species abundance patterns of communities with niches employ simple models with pre-imposed niche structure. These studies suggest that species abundance distributions are insensitive to the relative contributions of niche and neutral processes, especially when diversity is much higher than the number of niches. Here we analyze results from a stochastic population model with competition driven by trait differences. With this model, niche structure emerges as clumps of species that persist along the trait axis, and leads to more substantial differences from neutral species abundance distributions than have been previously shown. We show that heterogeneity in between-niche interaction strength (i.e., in the strength of competition between species in different niches) plays the dominant role in shaping the species abundances along the trait axis, acting as a biotic filter favoring species at the centers of niches. Furthermore, we show that heterogeneity in within-niche interactions (i.e., in the competition between species in the same niche) counteracts the influence of heterogeneity in between-niche interactions on the SAD to some degree. Our results suggest that competitive interactions that produce niches can also influence the shapes of SADs.Funding Agencies|National Science Foundation - Advancing Theory in Biology program [1038678]; National Science Foundation [OCI-1053575]; Tulane Center for Computational Science</p
