12 research outputs found

    Evidence for solar cycles in a late Holocene speleothem record from Dongge Cave, China

    Get PDF
    The association between solar activity and Asian monsoon (AM) remains unclear. Here we evaluate the possible connection between them based on a precisely-dated, high-resolution speleothem oxygen isotope record from Dongge Cave, southwest China during the past 4.2 thousand years (ka). Without being adjusted chronologically to the solar signal, our record shows a distinct peak-to-peak correlation with cosmogenic nuclide 14C, total solar irradiance (TSI) and sunspot number (SN) at multi-decadal to centennial timescales. Further cross-wavelet analyses between our calcite ή18O and atmospheric 14C show statistically strong coherence at three typical periodicities of ~80, 200 and 340 years, suggesting important roles of solar activities in modulating AM changes at those timescales. Our result has further indicated a better correlation between our calcite ή18O record and atmospheric 14C than between our record and TSI. This better correlation may imply that the Sun–monsoon connection is dominated most likely by cosmic rays and oceanic circulation (both associated to atmospheric 14C), instead of the direct solar heating (TSI)

    An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes

    Get PDF
    We investigate the mechanism of a decadal-scale weakening shift in the strength of the subpolar gyre (SPG) that is found in one among three last millennium simulations with a state-of-the-art Earth system model. The SPG shift triggers multicentennial anomalies in the North Atlantic climate driven by long-lasting internal feedbacks relating anomalous oceanic and atmospheric circulation, sea ice extent, and upper-ocean salinity in the Labrador Sea. Yet changes throughout or after the shift are not associated with a persistent weakening of the Atlantic Meridional Overturning Circulation or shifts in the North Atlantic Oscillation. The anomalous climate state of the North Atlantic simulated after the shift agrees well with climate reconstructions from within the area, which describe a transition between a stronger and weaker SPG during the relatively warm medieval climate and the cold Little Ice Age respectively. However, model and data differ in the timing of the onset. The simulated SPG shift is caused by a rapid increase in the freshwater export from the Arctic and associated freshening in the upper Labrador Sea. Such freshwater anomaly relates to prominent thickening of the Arctic sea ice, following the cluster of relatively small-magnitude volcanic eruptions by 1600 CE. Sensitivity experiments without volcanic forcing can nonetheless produce similar abrupt events; a necessary causal link between the volcanic cluster and the SPG shift can therefore be excluded. Instead, preconditioning by internal variability explains discrepancies in the timing between the simulated SPG shift and the reconstructed estimates for the Little Ice Age onset

    Massively Parallel RNA Sequencing Identifies a Complex Immune Gene Repertoire in the lophotrochozoan Mytilus edulis

    Get PDF
    The marine mussel Mytilus edulis and its closely related sister species are distributed world-wide and play an important role in coastal ecology and economy. The diversification in different species and their hybrids, broad ecological distribution, as well as the filter feeding mode of life has made this genus an attractive model to investigate physiological and molecular adaptations and responses to various biotic and abiotic environmental factors. In the present study we investigated the immune system of Mytilus, which may contribute to the ecological plasticity of this species. We generated a large Mytilus transcriptome database from different tissues of immune challenged and stress treated individuals from the Baltic Sea using 454 pyrosequencing. Phylogenetic comparison of orthologous groups of 23 species demonstrated the basal position of lophotrochozoans within protostomes. The investigation of immune related transcripts revealed a complex repertoire of innate recognition receptors and downstream pathway members including transcripts for 27 toll-like receptors and 524 C1q domain containing transcripts. NOD-like receptors on the other hand were absent. We also found evidence for sophisticated TNF, autophagy and apoptosis systems as well as for cytokines. Gill tissue and hemocytes showed highest expression of putative immune related contigs and are promising tissues for further functional studies. Our results partly contrast with findings of a less complex immune repertoire in ecdysozoan and other lophotrochozoan protostomes. We show that bivalves are interesting candidates to investigate the evolution of the immune system from basal metazoans to deuterostomes and protostomes and provide a basis for future molecular work directed to immune system functioning in Mytilus

    Data Descriptor: A global multiproxy database for temperature reconstructions of the Common Era

    Get PDF
    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high-and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.(TABLE)Since the pioneering work of D'Arrigo and Jacoby1-3, as well as Mann et al. 4,5, temperature reconstructions of the Common Era have become a key component of climate assessments6-9. Such reconstructions depend strongly on the composition of the underlying network of climate proxies10, and it is therefore critical for the climate community to have access to a community-vetted, quality-controlled database of temperature-sensitive records stored in a self-describing format. The Past Global Changes (PAGES) 2k consortium, a self-organized, international group of experts, recently assembled such a database, and used it to reconstruct surface temperature over continental-scale regions11 (hereafter, ` PAGES2k-2013').This data descriptor presents version 2.0.0 of the PAGES2k proxy temperature database (Data Citation 1). It augments the PAGES2k-2013 collection of terrestrial records with marine records assembled by the Ocean2k working group at centennial12 and annual13 time scales. In addition to these previously published data compilations, this version includes substantially more records, extensive new metadata, and validation. Furthermore, the selection criteria for records included in this version are applied more uniformly and transparently across regions, resulting in a more cohesive data product.This data descriptor describes the contents of the database, the criteria for inclusion, and quantifies the relation of each record with instrumental temperature. In addition, the paleotemperature time series are summarized as composites to highlight the most salient decadal-to centennial-scale behaviour of the dataset and check mutual consistency between paleoclimate archives. We provide extensive Matlab code to probe the database-processing, filtering and aggregating it in various ways to investigate temperature variability over the Common Era. The unique approach to data stewardship and code-sharing employed here is designed to enable an unprecedented scale of investigation of the temperature history of the Common Era, by the scientific community and citizen-scientists alike

    Archaeology and Sclerochronology of Marine Bivalves

    Get PDF
    International audienceIn a rapidly changing world, maintenance of the good health of the marine environment requires a detailed understanding of its mechanisms of change, and the ability to detect early signals of a shift away from the equilibrium state that we assume characterized it before there was any significant human impact. Given that instrumental measurements of the oceans go back no further than a few decades, the only way in which we can assess the long-term baseline variability that characterizes the pre-perturbation equilibrium state of the marine environment is by the use of proxy records contained in stratified or layered natural archives such as corals, fish otoliths and bivalve mollusc shells.In this chapter we will look at the ways in which the environmental signals recorded in the shells of bivalve molluscs can be used to shed light on marine variability both in the present and over past centuries and millennia, and specifically how they can be used to study marine climate, the marine environment and the economic and cultural history of the relationship between humans and the oceans.The chapter is divided into two parts: section one describes the morphological, geochemical and crystallographic techniques that are used to obtain information from the shells, while section two covers the use of bivalve shells in a wide range of applications, including ecosystem services, environmental monitoring, archaeology, climate reconstruction, and climate modeling
    corecore