213 research outputs found

    Automated ice-tethered profilers for seawater observations under pack ice in all seasons

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 25 (2008): 2091-2105, doi:10.1175/2008JTECHO587.1.An automated, easily deployed Ice-Tethered Profiler (ITP) instrument system, developed for deployment on perennial sea ice in the polar oceans to measure changes in upper ocean water properties in all seasons, is described, and representative data from prototype instruments are presented. The ITP instrument consists of three components: a surface subsystem that sits atop an ice floe; a weighted, plastic-jacketed wire-rope tether of arbitrary length (up to 800 m) suspended from the surface element; and an instrumented underwater unit that employs a traction drive to profile up and down the wire tether. ITPs profile the water column at a programmed sampling interval; after each profile, the underwater unit transfers two files holding oceanographic and engineering data to the surface unit using an inductive modem and from the surface instrument to a shore-based data server using an Iridium transmitter. The surface instrument also accumulates battery voltage readings, buoy temperature data, and locations from a GPS receiver at a specified interval (usually every hour) and transmits those data daily. Oceanographic and engineering data are processed, displayed, and made available in near–real time (available online at http://www.whoi.edu/itp). Six ITPs were deployed in the Arctic Ocean between 2004 and 2006 in the Beaufort gyre with various programmed sampling schedules of two to six one-way traverses per day between 10- and 750–760-m depth, providing more than 5300 profiles in all seasons (as of July 2007). The acquired CTD profile data document interesting spatial variations in the major water masses of the Canada Basin, show the double-diffusive thermohaline staircase that lies above the warm, salty Atlantic layer, measure seasonal surface mixed layer deepening, and document several mesoscale eddies. Augmenting the systems already deployed and to replace expiring systems, an international array of more than one dozen ITPs will be deployed as part of the Arctic Observing Network during the International Polar Year (IPY) period (2007–08) holding promise for more valuable real-time upper ocean observations for operational needs, to support studies of ocean processes, and to facilitate numerical model initialization and validation.Initial development of the ITP concept was supported by the Cecil H. and Ida M. Green Technology Innovation Program. Funding for construction and deployment of the prototype ITPs was provided by the National Science Foundation Oceanographic Technology and Interdisciplinary Coordination (OTIC) Program and Office of Polar Programs (OPP) under Grant OCE-0324233. Continued support has been provided by the OPP Arctic Sciences Section under Awards ARC-0519899 and ARC-0631951, and internal WHOI funding

    Identifying key needs for the integration of social‐ecological outcomes in arctic wildlife monitoring

    Get PDF
    For effective monitoring in social‐ecological systems to meet needs for biodiversity, science, and humans, desired outcomes must be clearly defined and routes from direct to derived outcomes understood. The Arctic is undergoing rapid climatic, ecological, social, and economic changes and requires effective wildlife monitoring to meet diverse stakeholder needs. To identify stakeholder priorities concerning desired outcomes of arctic wildlife monitoring, we conducted in‐depth interviews with 29 arctic scientists, policy and decision makers, and representatives of Indigenous organizations and NGOs. Using qualitative content analysis, we identified and defined desired outcomes and documented links between outcomes. Using network analysis, we investigated the structure of perceived links between desired outcomes. We identified 18 desired outcomes from monitoring and classified them as either driven by monitoring information, monitoring process, or a combination of both. Highly cited outcomes were make decisions, conserve, detect change, disseminate, and secure food. These reflect key foci of arctic monitoring. Infrequently cited outcomes (e.g., govern) were emerging themes. Three modules comprised our outcome network. The modularity highlighted the low strength of perceived links between outcomes that were information driven or primarily information driven (e.g., detect change, make decisions, conserve or secure food) and process driven and derived outcomes (e.g., cooperate, learn, educate). The outcomes expand monitoring community and disseminate created connections between these modules. We identified key desired outcomes from monitoring that are widely applicable to social‐ecological systems within and outside the Arctic, particularly those with wildlife subsistence economies. Attributes and motivations associated with outcomes can guide future development of integrated monitoring goals for biodiversity conservation and human needs. Our results demonstrate the disconnect between information and process driven goals and how expanding the monitoring community and better integrating monitoring stakeholders will help connect information derived and process derived outcomes for effective ecosystem stewardship

    Arctic Ocean fresh water changes over the past 100 years and their causes

    Get PDF
    Recent observations show dramatic changes of the Arctic atmosphere–ice–ocean system. Here the authors demonstrate, through the analysis of a vast collection of previously unsynthesized observational data, that over the twentieth century the central Arctic Ocean became increasingly saltier with a rate of freshwater loss of 239 ± 270 km3 decade−1. In contrast, long-term (1920–2003) freshwater content (FWC) trends over the Siberian shelf show a general freshening tendency with a rate of 29 ± 50 km3 decade−1. These FWC trends are modulated by strong multidecadal variability with sustained and widespread patterns. Associated with this variability, the FWC record shows two periods in the 1920s–30s and in recent decades when the central Arctic Ocean was saltier, and two periods in the earlier century and in the 1940s–70s when it was fresher. The current analysis of potential causes for the recent central Arctic Ocean salinification suggests that the FWC anomalies generated on Arctic shelves (including anomalies resulting from river discharge inputs) and those caused by net atmospheric precipitation were too small to trigger long-term FWC variations in the central Arctic Ocean; to the contrary, they tend to moderate the observed long-term central-basin FWC changes. Variability of the intermediate Atlantic Water did not have apparent impact on changes of the upper–Arctic Ocean water masses. The authors’ estimates suggest that ice production and sustained draining of freshwater from the Arctic Ocean in response to winds are the key contributors to the salinification of the upper Arctic Ocean over recent decades. Strength of the export of Arctic ice and water controls the supply of Arctic freshwater to subpolar basins while the intensity of the Arctic Ocean FWC anomalies is of less importance. Observational data demonstrate striking coherent long-term variations of the key Arctic climate parameters and strong coupling of long-term changes in the Arctic–North Atlantic climate system. Finally, since the high-latitude freshwater plays a crucial role in establishing and regulating global thermohaline circulation, the long-term variations of the freshwater content discussed here should be considered when assessing climate change and variability

    CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 33 (2006): L17403, doi:10.1029/2006GL026972.Terrestrial ecosystems of the northern high latitudes (above 50oN) exchange large amounts of CO2 and CH4 with the atmosphere each year. Here we use a process-based model to estimate the budget of CO2 and CH4 of the region for current climate conditions and for future scenarios by considering effects of permafrost dynamics, CO2 fertilization of photosynthesis and fire. We find that currently the region is a net source of carbon to the atmosphere at 276 Tg C yr-1. We project that throughout the 21st century, the region will most likely continue as a net source of carbon and the source will increase by up to 473 Tg C yr-1 by the end of the century compared to the current emissions. However our coupled carbon and climate model simulations show that these emissions will exert relatively small radiative forcing on global climate system compared to large amounts of anthropogenic emissions.This study was supported by a NSF Biocomplexity (ATM-0120468) and ARCSS programs; the NASA Land Cover and Land Use Change and EOS Interdisciplinary Science (NNG04GJ80G) programs; and by funding from MIT Joint Program on the Science and Policy of Global Change, which is supported by a consortium of government, industry and foundation sponsors

    The Economics of 1.5°C Climate Change

    Get PDF
    The economic case for limiting warming to 1.5°C is unclear, due to manifold uncertainties. However, it cannot be ruled out that the 1.5°C target passes a cost-benefit test. Costs are almost certainly high: The median global carbon price in 1.5°C scenarios implemented by various energy models is more than US$100 per metric ton of CO2 in 2020, for example. Benefits estimates range from much lower than this to much higher. Some of these uncertainties may reduce in the future, raising the question of how to hedge in the near term. Maintaining an option on limiting warming to 1.5°C means targeting it now. Setting off with higher emissions will make 1.5°C unattainable quickly without recourse to expensive large-scale carbon dioxide removal (CDR), or solar radiation management (SRM), which can be cheap but poses ambiguous risks society seems unwilling to take. Carbon pricing could reduce mitigation costs substantially compared with ramping up the current patchwork of regulatory instruments. Nonetheless, a mix of policies is justified and technology-specific approaches may be required. It is particularly important to step up mitigation finance to developing countries, where emissions abatement is relatively cheap

    Expansion of Canopy-Forming Willows Over the Twentieth Century on Herschel Island, Yukon Territory, Canada

    Get PDF
    Canopy-forming shrubs are reported to be increasing at sites around the circumpolar Arctic. Our results indicate expansion in canopy cover and height of willows on Herschel Island located at 70° north on the western Arctic coast of the Yukon Territory. We examined historic photographs, repeated vegetation surveys, and conducted monitoring of long-term plots and found evidence of increases of each of the dominant canopy-forming willow species (Salix richardsonii, Salix glauca and Salix pulchra), during the twentieth century. A simple model of patch initiation indicates that the majority of willow patches for each of these species became established between 1910 and 1960, with stem ages and maximum growth rates indicating that some patches could have established as late as the 1980s. Collectively, these results suggest that willow species are increasing in canopy cover and height on Herschel Island. We did not find evidence that expansion of willow patches is currently limited by herbivory, disease, or growing conditions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13280-011-0168-y) contains supplementary material, which is available to authorized users

    A comparison of bioclimatic conditions on Franz Josef Land (the Arctic) between the turn of the nineteenth to twentieth century and present day

    Get PDF
    The paper presents the variability of meteorological conditions: air temperature, wind speed and relative air humidity; and biometeorological indices: wind chill temperature, predicted clothing insulation and accepted level of physical activity on Franz Josef Land (in Teplitz Bay and Calm Bay) in the years 1899–1931. It employs meteorological measurements taken during four scientific expeditions to the study area. The analysis mainly covered the period October–April, for which the most complete data set is available. For that period of the year, which includes the part of the year with the Franz Josef Land’s coldest air temperatures, the range and nature of changes in meteorological and biometeorological conditions between historical periods and the modern period (1981–2010) were studied. The data analysis revealed that during the three oldest expeditions (which took place in the years 1899–1914), the biometeorological conditions in the study area were more harsh to humans than in the modern period (1981–2010) or similarly harsh. In contrast, during the 1930/1931 expedition, which represents the Early Twentieth CenturyWarming (ETCW), conditions were clearly more favourable (including predicted clothing insulation being 0.3 clo lower and 4.0 °C higher wind chill temperature than conditions observed nowadays)

    Effect of temperature on rates of ammonium uptake and nitrification in the western coastal Arctic during winter, spring, and summer

    Get PDF
    Biogeochemical rate processes in the Arctic are not currently well constrained, and there is very limited information on how rates may change as the region warms. Here we present data on the sensitivity of ammonium (NH4+) uptake and nitrification rates to short-term warming. Samples were collected from the Chukchi Sea off the coast of Barrow, Alaska, during winter, spring, and summer and incubated for 24h in the dark with additions of (NH4+)-N-15 at -1.5, 6, 13, and 20 degrees C. Rates of NH4+ uptake and nitrification were measured in conjunction with bacterial production. In all seasons, NH4+ uptake rates were highest at temperatures similar to current summertime conditions but dropped off with increased warming, indicative of psychrophilic (i.e., cold-loving) microbial communities. In contrast, nitrification rates were less sensitive to temperature and were higher in winter and spring compared to summer. These findings suggest that as the Arctic coastal ecosystem continues to warm, NH4+ assimilation may become increasingly important, relative to nitrification, although the magnitude of NH4+ assimilation would be still be lower than nitrification
    • 

    corecore