121 research outputs found

    Altered glucose-dependent secretion of glucagon and ACTH is associated with insulin resistance, assessed by population analysis

    Get PDF
    This study aimed to characterize how the dysregulation of counter-regulatory hormones can contribute to insulin resistance and potentially to diabetes. Therefore, we investigated the association between insulin sensitivity and the glucose- and insulin-dependent secretion of glucagon, adrenocorticotropic hormone (ACTH), and cortisol in non-diabetic individuals using a population model analysis. Data, from hyperinsulinemic–hypoglycemic clamps, were pooled for analysis, including 52 individuals with a wide range of insulin resistance (reflected by glucose infusion rate 20–60 min; GIR 20–60min). Glucagon secretion was suppressed by glucose and, to a lesser extent, insulin. The GIR20–60min and BMI were identified as predictors of the insulin effect on glucagon. At no rmoglycemia (5 mmol/L), a 90% suppression of glucagon was achieved at insulin concentrations of 16.3 and 43.4 μU/mL in individuals belonging to the highest and lowest quanti les of insulin sensitivity, respectively. Insulin resistance of glucagon secretion explained the elevated fasting glucagon for individuals with a low GIR20–60min. ACTH secretion was suppressed by glucose and not affected by insulin. The GIR20–60min was superior to other measures as a predictor of glucose-dependent ACTH secretion, with 90% suppression of ACTH secretion by glucose at 3.1 and 3.5 mmol/L for insulin-sensitive and insulin-resista nt individuals, respectively. This difference may appear small but shifts the suppression rang e into normoglycemia for individuals with insulin resistance, thus, leading to earli er and greater ACTH/cortisol response when the glucose falls. Based on modeling of pooled glucose-clamp data, insulin resistance was associated with generally elevated glucagon and a potentiated cortisol-axis response to hypoglycemia, and over time both hormonal pathways may therefore contribute to dysglycemia and possibly type 2 diabetes

    A cost-effective steam-driven RO plant for brackish groundwater

    Get PDF
    Desalination is a costly means of providing freshwater. Most desalination plants use either reverse osmosis (RO) or thermal distillation. Both processes have drawbacks: RO is efficient but uses expensive electrical energy; thermal distillation is inefficient but uses less expensive thermal energy. This work aims to provide an efficient RO plant that uses thermal energy. A steam-Rankine cycle has been designed to drive mechanically a batch-RO system that achieves high recovery, without the high energy penalty typically incurred in a continuous-RO system. The steam may be generated by solar panels, biomass boilers, or as an industrial by-product. A novel mechanical arrangement has been designed for low cost, and a steam-jacketed arrangement has been designed for isothermal expansion and improved thermodynamic efficiency. Based on detailed heat transfer and cost calculations, a gain output ratio of 69-162 is predicted, enabling water to be treated at a cost of 71 Indian Rupees/m3 at small scale. Costs will reduce with scale-up. Plants may be designed for a wide range of outputs, from 5 m3/day, up to commercial versions producing 300 m3/day of clean water from brackish groundwater

    Correlation-Driven Transient Hole Dynamics Resolved in Space and Time in the Isopropanol Molecule

    Get PDF
    The possibility of suddenly ionized molecules undergoing extremely fast electron hole (or hole) dynamics prior to significant structural change was first recognized more than 20 years ago and termed charge migration. The accurate probing of ultrafast electron hole dynamics requires measurements that have both sufficient temporal resolution and can detect the localization of a specific hole within the molecule. We report an investigation of the dynamics of inner valence hole states in isopropanol where we use an x-ray pump–x-ray probe experiment, with site and state-specific probing of a transient hole state localized near the oxygen atom in the molecule, together with an ab initio theoretical treatment. We record the signature of transient hole dynamics and make the first tentative observation of dynamics driven by frustrated Auger-Meitner transitions. We verify that the effective hole lifetime is consistent with our theoretical prediction. This state-specific measurement paves the way to widespread application for observations of transient hole dynamics localized in space and time in molecules and thus to charge transfer phenomena that are fundamental in chemical and material physics

    Ultrafast modification of the electronic structure of a correlated insulator

    Get PDF
    A nontrivial balance between Coulomb repulsion and kinematic effects determines the electronic structure of correlated electron materials. The use of electromagnetic fields strong enough to rival these native microscopic interactions allows us to study the electronic response as well as the time scales and energies involved in using quantum effects for possible applications. We use element specific transient x ray absorption spectroscopy and high harmonic generation to measure the response to ultrashort off resonant optical fields in the prototypical correlated electron insulator NiO. Surprisingly, fields of up to 0.22 V lead to no detectable changes in the correlated Ni 3d orbitals contrary to previous predictions. A transient directional charge transfer is uncovered, a behavior that is captured by first principles theory. Our results highlight the importance of retardation effects in electronic screening and pinpoints a key challenge in functionalizing correlated materials for ultrafast device operatio

    Decomposing socio-economic inequalities in leisure-time physical inactivity: the case of Spanish children

    Get PDF
    BACKGROUND: Physical inactivity is associated with an increased risk of all-cause mortality and entails a substantial economic burden for health systems. Also, the analysis of inequality in lifestyles for young populations may contribute to reduce health inequalities during adulthood. This paper examines the income-related inequality regarding leisure-time physical inactivity in Spanish children. METHODS: In this cross-sectional study based on the Spanish National Health Survey for 2011-12, concentration indices are estimated to measure socioeconomic inequalities in leisure-time physical inactivity. A decomposition analysis is performed to determine the factors that explain income-related inequalities. RESULTS: There is a significant socioeconomic gradient favouring the better-off associated with leisure-time physical inactivity amongst Spanish children, which is more pronounced in the case of girls. Income shows the highest contribution to total inequality, followed by education of the head of the household. The contribution of several factors (education, place of residence, age) significantly differs by gender. CONCLUSIONS: There is an important inequity in the distribution of leisure-time physical inactivity. Public policies aimed at promoting physical activity for children should prioritize the action into the most disadvantaged subgroups of the population. As the influence of determinants of health styles significantly differ by gender, this study points out the need of addressing the research on income-related inequalities in health habits from a gender perspective

    Play, Learn, and Teach Outdoors—Network (PLaTO-Net): terminology, taxonomy, and ontology

    Get PDF
    Background: A recent dialogue in the field of play, learn, and teach outdoors (referred to as “PLaTO” hereafter) demonstrated the need for developing harmonized and consensus-based terminology, taxonomy, and ontology for PLaTO. This is important as the field evolves and diversifies in its approaches, contents, and contexts over time and in different countries, cultures, and settings. Within this paper, we report the systematic and iterative processes undertaken to achieve this objective, which has built on the creation of the global PLaTO-Network (PLaTO-Net). Methods: This project comprised of four major methodological phases. First, a systematic scoping review was conducted to identify common terms and definitions used pertaining to PLaTO. Second, based on the results of the scoping review, a draft set of key terms, taxonomy, and ontology were developed, and shared with PLaTO members, who provided feedback via four rounds of consultation. Third, PLaTO terminology, taxonomy, and ontology were then finalized based on the feedback received from 50 international PLaTO member participants who responded to ≥ 3 rounds of the consultation survey and dialogue. Finally, efforts to share and disseminate project outcomes were made through different online platforms. Results: This paper presents the final definitions and taxonomy of 31 PLaTO terms along with the PLaTO-Net ontology model. The model incorporates other relevant concepts in recognition that all the aspects of the model are interrelated and interconnected. The final terminology, taxonomy, and ontology are intended to be applicable to, and relevant for, all people encompassing various identities (e.g., age, gender, culture, ethnicity, ability). Conclusions: This project contributes to advancing PLaTO-based research and facilitating intersectoral and interdisciplinary collaboration, with the long-term goal of fostering and strengthening PLaTO’s synergistic linkages with healthy living, environmental stewardship, climate action, and planetary health agendas. Notably, PLaTO terminology, taxonomy and ontology will continue to evolve, and PLaTO-Net is committed to advancing and periodically updating harmonized knowledge and understanding in the vast and interrelated areas of PLaTO

    Forty years of carabid beetle research in Europe - from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation

    Get PDF
    Volume: 100Start Page: 55End Page: 14
    corecore