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Abstract

This study aimed to characterize how the dysregulation of counter-regulatory hormones 
can contribute to insulin resistance and potentially to diabetes. Therefore, we investigated 
the association between insulin sensitivity and the glucose- and insulin-dependent 
secretion of glucagon, adrenocorticotropic hormone (ACTH), and cortisol in non-diabetic 
individuals using a population model analysis. Data, from hyperinsulinemic–hypoglycemic 
clamps, were pooled for analysis, including 52 individuals with a wide range of insulin 
resistance (reflected by glucose infusion rate 20–60 min; GIR20–60min). Glucagon secretion 
was suppressed by glucose and, to a lesser extent, insulin. The GIR20–60min and BMI were 
identified as predictors of the insulin effect on glucagon. At normoglycemia (5 mmol/L), 
a 90% suppression of glucagon was achieved at insulin concentrations of 16.3 and 43.4 
µU/mL in individuals belonging to the highest and lowest quantiles of insulin sensitivity, 
respectively. Insulin resistance of glucagon secretion explained the elevated fasting 
glucagon for individuals with a low GIR20–60min. ACTH secretion was suppressed by glucose 
and not affected by insulin. The GIR20–60min was superior to other measures as a predictor 
of glucose-dependent ACTH secretion, with 90% suppression of ACTH secretion by glucose 
at 3.1 and 3.5 mmol/L for insulin-sensitive and insulin-resistant individuals, respectively. 
This difference may appear small but shifts the suppression range into normoglycemia 
for individuals with insulin resistance, thus, leading to earlier and greater ACTH/cortisol 
response when the glucose falls. Based on modeling of pooled glucose-clamp data, insulin 
resistance was associated with generally elevated glucagon and a potentiated cortisol-
axis response to hypoglycemia, and over time both hormonal pathways may therefore 
contribute to dysglycemia and possibly type 2 diabetes.

Introduction

Development of type 2 diabetes has been perceived as 
a process that involves progressive insulin resistance in 
muscles, adipose tissue, and liver and a gradual failure 
of pancreatic beta cells to secrete sufficient amounts of 
insulin to compensate for the resistance. Around 80–90% 
of patients with type 2 diabetes are overweight (1, 2), and 
excess adipose tissue, particularly when located viscerally, 

leads to insulin resistance via mechanisms that are 
only partially understood (3). The insulin-antagonistic 
hormone glucagon has been suggested as a key player 
in the development of type 2 diabetes, along with other 
hormonal and neural systems (4). Dysregulation of 
glucagon secretion, in the postprandial state, has been 
demonstrated in type 2 diabetes and pre-diabetic states 
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(5, 6, 7). Glucagon secretion from pancreatic alpha cells is 
primarily regulated by the concentration of glucose, being 
stimulated by hypoglycemia and inhibited by normo- and 
hyperglycemia. The quantitative importance of other 
factors, such as inhibition by insulin and stimulation by 
amino acids, is disputed (8, 9).

Hypoglycemia also triggers the release of other counter-
regulatory hormones such as catecholamines, cortisol, and 
growth hormone (GH) (10). Cortisol secretion is primarily 
regulated by adrenocorticotropic hormone (ACTH), which, 
in turn, is stimulated by corticotrophin-releasing hormone 
(CRH) via the hypothalamic–pituitary–adrenal (HPA) axis. 
A major physiological effect of these counter-regulatory 
systems is to raise glucose and alleviate hypoglycemia, 
but they may also promote insulin resistance and 
chronic hyperglycemia. Previously, insulin resistance 
was associated with an altered response of glucagon and 
the HPA axis to glucose variations (11). Elevated activity 
in these hormonal pathways may thus contribute to the 
development of type 2 diabetes. However, the underlying 
factors are not well understood.

Clamp studies simplify the analyses of complex 
systems by keeping certain metabolic factors constant 
while allowing variation in others. Through clamp 
studies, a general attenuation in the counter-regulatory 
responses to hypoglycemia after reversal of obesity by a 
Roux-en-Y Gastric Bypass (RYGB) has been demonstrated 
(12), and individuals who are overweight and suffer from 
insulin resistance had an augmented HPA axis response 
to hypoglycemia (11). Clamp studies are time- and labor-
consuming which limits the study size and investigated 
study conditions, and therefore, they typically have modest 
statistical power. Mathematical modeling can optimize 
the utilization of the acquired information through the 
analysis of pooled data.

Population analysis, as commonly used in 
pharmacodynamic modeling, is well-suited for pooled data 
analysis, where data are collected from multiple studies 
with different study designs. Pharmacodynamic modeling 
is usually inspired by physiology, as in the turnover (13) and 
the pool models (14), in which secretion and degradation 
of a biomarker are driven by stimulation or inhibition 
by drug concentrations. However, these models can also 
be used for longitudinal measurements of endogenous 
hormonal regulation (15, 16, 17, 18, 19, 20) to establish 
integrative models with high predictability in simulations 
of not yet performed studies to explain between-subject 
variability (BSV) by characterization of the impact of 
covariates, for example BMI and measurement of insulin 
resistance.

The aim of this work was to characterize the 
concentration-dependent effects of systemic glucose and 
insulin on glucagon, ACTH, and cortisol secretion in 
relation to clinical covariates. This was done through the 
development of a population model based on data from 
pooled clamp studies.

Methods

Study data and design

Data from three previously published studies were 
pooled for model development: two hyperinsulinemic 
normoglycemic–hypoglycemic clamp (henceforth, 
denoted hypoglycemic clamp) studies in individuals pre- 
and post-RYGB (12, 21) and a cross-over study with hypo- 
and hyperglycemic clamps (11). The studies were conducted 
at Uppsala University (UU) and Uppsala University 
Hospital (UUH), and study procedures were performed in 
accordance with the Declaration of Helsinki. All studies 
were approved by the local Research Ethics Committee of 
Uppsala (Dnr 2017/550, 2013/480 and 2017/210). Informed 
consent was obtained from all participants.

All investigations were performed in the morning after 
an overnight fast. Medical history and anthropometrics 
were obtained, and baseline blood samples were taken at 
8:30 h, directly prior to the clamp experiment. Body fat 
percentage (BFP) and lean body mass (LBM) were assessed 
through bioimpedance measurements (Tanita Body 
Composition, BC-418; Tanita Corporation, Tokyo, Japan). 
A brief summary of the study designs and participants is 
included here, whilst detailed descriptions can be found 
in the original publications (11, 12, 21). Table 1 lists the 
overall characteristics of the included individuals.

Studies included in pooled analyses
Abrahamsson and colleagues (12) examined symptoms 
and counter-regulatory responses during hypoglycemic 
clamps in adults (23–55 years) with a BMI = 36.2– 
45.2 kg/m2, without diabetes before and after an RYGB. Only 
data from pre-surgery were used for model development.

The Almby and colleagues study (21) was a multi-
modal study and explored neurohormonal and cerebral 
responses, along with cognitive function during 
hypoglycemia in non-diabetic adults (25–48 years) before 
and after an RYGB, with BMI = 35.2–45.4 kg/m2. The pre-
surgery data were used.

The Lundqvist and colleagues study (11) investigated 
the differences in the secretion of glucose-regulating 
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hormones (i.e. glucagon, ACTH, and cortisol) across a 
range of glucose concentrations and the impact of being 
overweight and insulin resistance on the neuroendocrine 
glucose-regulatory responses. Adults (22–58 years) with a 
BMI = 19.8–49.5 kg/m2, without diabetes were recruited for 
a cross-over study with hypo- and hyperglycemic clamps.

Clamp procedures
The designs of the clamps are illustrated in Fig. 1. Briefly, 
the hypoglycemic clamps were initiated with simultaneous 
infusions of insulin, potassium chloride (8 mmol/h), 
and glucose solution (200 mg/mL variable rate). At the 
start of the experiment, normoglycemia was maintained, 
targeting 5.0 mmol/L, for 60–110 min after which glucose 
was lowered to 2.7 mmol/L (stepwise or in one step). 
Hypoglycemia was maintained for up to 105 min and was 
followed by a 30-min recovery when insulin infusions were 
terminated while glucose was infused at a fixed rate (100–
200 mg/kg/min). The average glucose infusion rate (in 
mg/min) per kg-LBM from 20–60 min of normoglycemia 
(GIR20–60min) was used to reflect insulin sensitivity, that is 
the inverse of insulin resistance.

The hyperglycemic clamp commenced with a 30-min 
isoglycemic phase, during which glucose was kept at the 
fasting concentration, with or without a variable rate 
glucose infusion (200 mg/mL). Glucose was increased 
stepwise in 45-min periods by 3, 6, and 9 mmol/L above 

isoglycemia. Thereafter, the infusion was terminated to 
allow glucose to return to normal range.

Bioanalytical methods
In all experiments, glucose was sampled every 5 min 
from an arterialized vein and analyzed with a Contour 
glucometer (Bayer Healthcare, Leverkusen, Germany). 
Fasting glucose (hexokinase method) and HbA1c were 
analyzed at the Department of Clinical Chemistry at 
UUH. Hormones were sampled at the start and end of 
the normoglycemic phase and at regular intervals (15–
30 min) throughout the hypoglycemic/hyperglycemic 
phases as depicted in Fig. 1. Hormonal samples were 
analyzed immediately or frozen at −80°C for later analysis. 
Insulin, cortisol, and ACTH (except Abrahamsson (11)) 
were analyzed at the Department of Clinical Chemistry 
at UUH using immunoassays (CobasE, Roche for insulin 
and cortisol; Immulite 2000XPi, Siemens Healthcare 
Global for ACTH). Glucagon was analyzed using an ELISA 
(#10-1271-01, RRID:AB_2737304, Mercodia, Uppsala, 
Sweden; within-assay CV 2.1–14%, between-assay CV 7.0–
16%) at the Clinical Diabetes and Metabolism Research 
Laboratory, UU.

Population modeling

Turnover and pool models were developed for the counter-
regulatory hormones, that is glucagon, ACTH, and 

Table 1 Baseline characteristics of study participants. Values are presented as medians (25th and 75th percentiles) for all data 
and by weight class, based on BMI. Blood chemistry is fasting.

All data Lean (BMI < 25)
Overweight  

(25 ≤ BMI < 30) Obese (BMI ≥30)

n 52 11 7 34a

n per study; Abrahamsson  
(11)/Almby (20)/Lundqvist (10)

12/11/29b 0/0/11 0/0/7 12/11/11b

Glucagon, pmol/L 9.79 (7.41–12.4) 8.24 (6.68–10.2) 9.61 (7.64–12.5) 10.5 (7.84–13.5)
ACTH, pmol/L 2.3 (1.35–3.23)c 2.3 (2.15–3.35) 2.20 (1.80–2.35) 2.85 (2.30–4.90)c

Cortisol, nmol/L 222 (162–271)d 255 (249–284) 179 (136–281) 205 (159–257)d

Glucose, mmol/L 5.3 (4.8–5.6) 4.8 (4.7–5.2) 5.3 (4.5–5.6) 5.4 (5.0–5.8)
Insulin, mU/L 10.4 (5.50–22.0) 3.80 (2.30–5.25) 8.30 (6.05–9.20) 17.5 (10.5–27.8)
Sex, n male/n female 7/45 3/8 1/6 3/31
Age, years 40 (30–50) 41 (34–50) 37 (28–49) 41 (30–48)
HbA1c, mmol/mol 34 (32–34.8) 34 (31.5–34) 34 (31.5–36.5) 35.5 (34–36.8)
BMI, kg/m2 37.3 (26.5–41.3) 23.0 (22.0–23.5) 27.0 (26.4–28.2) 39.0 (37.5–43.7)
Waist/hip ratio 0.90 (0.84–0.96)c 0.83 (0.78–0.87) 0.90 (0.86–0.99) 0.93 (0.89–0.98)c

Body fat, % 37.0 (27.2–46.7) 22.1 (20.8–28.2) 31.0 (22.0–39.4) 45.3 (37.3–49.0)
GIR20–60min, mg/kg-LBM/min 8.13 (4.46–10.8)e 13.1 (10.2–15.8) 7.98 (5.72–8.72) 4.85 (3.60–9.84)e

HOMA-IR 2.68 (1.40–5.14) 0.910 (0.705–1.24) 1.96 (1.50–2.45) 4.39 (2.64–6.65)

aFive individuals had BMI ≥ 30 kg/m2 and BMI < 35 kg/m2, all from the study by Lundqvist and colleagues (11); bOne woman participated only in the 
hypoglycemic clamp; cACTH and waist/hip ratios missing for all 12 individuals in Abrahamsson and colleagues (12); dOne cortisol measurement missing 
for one male study participant in Almby and colleagues (21); eBioimpedance missing for one male study participant in Abrahamsson and colleagues (12) 
GIR20–60min was calculated using an imputed LBM, based on the individual’s weight and the mean body fat % of the male study population.

This work is licensed under a Creative Commons 
Attribution 4.0 International License.https://doi.org/10.1530/EC-22-0506

https://ec.bioscientifica.com © 2023 the author(s)
Published by Bioscientifica Ltd

Downloaded from Bioscientifica.com at 04/07/2023 06:44:26PM
via free access

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1530/EC-22-0506
https://ec.bioscientifica.com


J Eriksson et al. e220506

PB–XX

12:4

cortisol, across all individuals and studies. The turnover 
models (Eq. 1) were parameterized with C – the plasma 
concentration of glucagon, ACTH, or cortisol, C0 – the 
initial plasma concentration of glucagon (Gn0), ACTH 
(ACTH0), or cortisol (Cort0), ksecr – the zero-order secretion 

rate of the hormone, and kdegr – the first-order degradation 
rate constant of the hormone (13).

dC
dt k k C k k Csecr degr secr degr= - × = ×; 0  (1)

Fasting glucose and insulin were required for the 
initial conditions of the model equations and data of 
individuals missing this information were excluded. The 
pool models (Eqs. 2 and 3) were parameterized with Cex 
– the extravascular concentrations of glucagon, ACTH, 
or cortisol, ksynth – the zero-order synthesis rate of the 
extravascular hormone, ksecr – the first-order secretion 
rate constant from extravascular to plasma and the 
above-defined parameters of the turnover model, C, C0, 
and kdegr (14).

dC
dt k k C k k Cex

synth secr ex synth secr ex= - × = ×; ,0  (2)

dC
dt k C k C C k C ksecr ex degr ex degr secr= × - × = ×; /,0  (3)

Dynamics in the models were driven by stimulants, in 
this case plasma glucose, plasma insulin, and/or ACTH, 
stimulating, through an Emax function or inhibiting, 
through an Imax function, the synthesis, secretion or 
degradation of the hormones. A sigmoidicity term, that 
is the Hill factor (γ) was explored in the Emax and Imax 
functions. To allow for additional delay between stimulant 
and hormone, the stimulant concentrations were allow 
additional delayed an effect compartment model (22) (Eq. 
4) was also explored, where t1/2 is the half-life of delay of 
stimulant, S is the plasma concentration of stimulant, and 
Se is the delayed concentrations of the same.

dS
dt

ln
t

S S S Se
e e=

( )
× -( ) =

2

1 2

0 0

/

,;  (4)

Glucagon sub-model
Glucagon dynamics were primarily modeled as driven 
by plasma glucose, and the subsequent contribution of 
plasma insulin was explored. Initially, a turnover model 
was used to investigate the relationship between glucose 
and insulin effects, implemented as below (Eqs. 5–8).

f G I fr f G fr f I1 1 1,( ) = - × ( ) + -( ) × ( )  (5)

f G I I f G f Imax1 1,( ) = - × ( ) × ( )( )  (6)

f G I fr f G fr f I comb f G f I1 1 1,( ) = - × ( ) + -( ) × ( ) + × ( ) × ( )  (7)

Figure 1
Schematic picture of study designs of hypo- (A–C) and hyperglycemic 
clamps (D) in Abrahamsson and colleagues (12) (A), Almby and colleagues 
(21) (B), and Lundqvist and colleagues (11) (C, D). Black vertical arrows 
indicate the time of measurement of insulin, glucagon, ACTH (not 
Abrahamsson), and cortisol. Target glucose concentrations are shown at 
the top of each panel per study/arm. BSA, body surface area. *Neither 
cortisol nor ACTH sampled at this timepoint, **ACTH not sampled at this 
timepoint
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f G I fr f G fr f I comb f G f I1 1 1,( ) = - × ( ) + -( ) × ( ) - × ( ) × ( )  (8)

Thereafter, the turnover model was compared to a pool 
model, investigating the effect of glucose and/or insulin 
on ksecr or ksynth. In the last step, the effects of delaying the 
action of glucose and/or insulin were explored with an 
effect compartment model.

ACTH sub-model
ACTH dynamics were primarily modeled as driven by 
plasma glucose with a sigmoidal Imax function, comparing 
the turnover and pool models with dynamics on ksecr or 
ksynth. The dynamics were investigated as driven by plasma 
glucose as well as delayed, effect compartment glucose. 
The last modeling step was to explore negative feedback 
of cortisol on ACTH after the cortisol sub-model had been 
developed.

Cortisol sub-model
Cortisol dynamics were modeled as primarily driven by 
ACTH with a sigmoidal Emax function, comparing the 
turnover and the pool models, with dynamics on ksecr 
or ksynth. This was explored with both direct and delayed 
ACTH. The last modeling step was to explore the direct 
effects of glucose on cortisol.

Covariates
After finalizing all three sub-models, covariates were 
investigated as factors explaining BSV. Missing data of 
baseline covariates were imputed as the median of the 
population. The investigated covariates were age, GIR20–

60min, sex, HOMA-IR, BMI, waist/hip ratio, BFP, fasting 
plasma glucose, and HbA1c and were tested through either 
linear or exponential additions to parameters with BSV. 
Due to the small study size, a robust covariate selection 
was performed with four-fold cross-validation (XV) step-
wise covariate modeling (SCM) (23) and full random effect 
modeling (FREM) (24).

Statistical assessments during model-building  
and model-fit evaluation
Measurements below limit of quantification (BLQ) were 
handled with an additional residual error, thereby allowing 
more uncertainty in these observations. Additions of 
structural elements, parameters, and relationships with 
covariates were only included if a better fit to the data was 

indicated based on the difference in objective function value 
between two competing models (ΔOFV). The likelihood ratio 
test was used for nested models with β = 0.05 and the Akaike 
information criterion was used for non-nested models. The 
standard errors (SE) of the parameter parameters and BSV 
were obtained through the use of bootstrap simulations 
(n = 200). A good predictive performance of the model was 
assessed by the use of visual predictive checks.

Random variables for BSV were initially implemented 
on parameters of baseline measurements and thereafter 
added to the model if indicated by the above-described 
model selection criteria. Random variables of between-
occasion variability (BOV) were investigated only on 
parameters of baseline measurements.

Data management, statistical calculations, and 
graphical evaluation were performed in R v.4.0.3 
(R Foundation for Statistical Computing, Vienna, 
Austria) (https://www.R-project.org/). Simulations and 
estimations were performed using NONMEM v.7.4.4 
(Icon Development Solutions, Ellicott City, MD, USA) 
(25) and XV-SCM and FREM were used as implemented in 
PsN v.5.2.0 (26).

Results

Summary of data

Of the original 53 individuals, 52 were included in the 
pooled data. One individual was excluded as the fasting 
insulin was missing. Table 1 summarizes covariates 
and baseline measurements of glucose and hormones. 
Investigated glucose and insulin concentrations ranged 
1.9–16 mmol/L and 0.8–580 µU/mL, respectively, while 
glucagon, ACTH, and cortisol ranged 0.2–96 pmol/L, 1.0–
73 pmol/L, and 73–819 nmol/L, respectively (Table 1).

Population data analysis

Glucagon sub-model
Independent of the relationship to plasma glucose, 
the inclusion of plasma insulin resulted in major 
improvements in model fit. The multiplicative inhibition 
of glucose and insulin on glucagon (Eq. 6) had the smallest 
improvement in OFV (∆OFV = −312). The remaining three 
relationships (Eq. 5, 7 and 8) had similar fit (∆OFV = −355), 
favoring the additivie inhibiton relationship (Eq. 5), as 
it had one parameter less than the other relationships. 
Glucose and insulin, acting on the synthesis of glucagon, 
in a pool model resulted in a similar fit to the turnover 
model (∆OFV = −0.8). However, moving the effect of 
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glucose and insulin to secretion in the pool model resulted 
in a worse fit (∆OFV = 108). Removing the Hill factor of the 
Imax function of glucose significantly deteriorated the fit 
of the model to the data (∆OFV = 947), and the Hill factor 
was retained in the model. Removing the Hill factor of 
the insulin relationship did, however, not worsen the fit. 
Allowing additional delay of either glucose or insulin had 
no effect on the model fit. The final glucagon sub-model 
is shown in Fig. 2, and the performance of the final model 
vs glucose and time is shown in Fig. 3 and 4, respectively. 
The effect of glucose and insulin is described by equation 
9. BSV was implemented on baseline glucagon and both 
potency parameters (IC50,G-G and IC50,G-I). BOV significantly 
improved the fit when added to the baseline.

f G I frac G
IC G

frac I
IC I

G

G G
G I

1

50 50

1 1,
, ,

( ) = - ×
+

æ

è
ç

ö

ø
÷ - -( ) ×

+
æ

è
ç

g

g g

öö

ø
÷   (9)

where the glucose effect is described by G – glucose 
concentrations, frac – the fractional effect attributed to 
glucose in absence of insulin, γG – the Hill factor, and 
IC50, G – the potency of glucose on glucagon. The insulin 
effect is described by I – insulin concentrations, IC50, I  
– the potency of insulin on glucagon, and 1-frac – the 
fractional effect attributed to insulin in absence of glucose. 
The fit of the model to the data was excellent with a good 
predictive performance of both the glucagon data and 
proportion of data BLQ (Fig. 3 – left panels) with 18.9% 
of the residuals outside the 80% confidence interval (CI), 
evenly distributed around the median. Figure 5A illustrates 
the inhibition of glucagon secretion by glucose and 
insulin. At the start of the study, in fasting conditions, the 
suppression of glucagon varied greatly in the population 
(90% CI: 68–95%) related to the high BSV in IC50, I (Table 2). 
This high BSV and the variable fasting insulin also explain 
the high variability of fasting glucagon.

ACTH sub-model
The turnover and the pool model with effects on ksynth 
had similar fit (∆OFV = −1.7 for pool model), favoring 
the turnover model with fewer parameters. The pool 
model with effect on ksecr performed worse than all other 
investigated models (∆OFV = 592) and was thus not further 
explored. Delaying glucose concentrations through an 
effect compartment model (Eq. 4) improved the fit of the 
model to the data further (∆OFV = −9.4). Removing the Hill 
factor of the Imax function deteriorated the fit significantly 
(∆OFV = 305). The final relationship between ACTH 
secretion and glucose was best described as in equation 10. 

The BSV was implemented on baseline ACTH and glucose 
potency (IC50,A), and BOV significantly improved the fit 
when implemented on the baseline. Negative feedback of 
cortisol on ACTH resulted in a highly unstable model, and 
further model refinements related to the feedback were 
abandoned due to parameter unidentifiability.

f G I G
IC Ge max A

e

A e

A

A A2

50

1( ) = - ×
+

,

,

g

g g  (10)

where the effect is described by Ge – the delayed glucose 
concentrations, delayed by t1/2 – the half-life of delay (Eq. 
4), Imax,A – the maximal effect of glucose on ACTH, γA – the 
Hill factor, and IC50,A – the potency of glucose on ACTH. The 
fit of the model to the data was fair with a good predictive 
performance of both the ACTH data and proportion of 
data BLQ (Fig. 3 – middle panels) with 15% of the residuals 
outside the 80% CI, evenly distributed around the median. 
Figure 5B shows the relationship between ACTH secretion 
and glucose. The maximum inhibition (Imax,A) was close 
to 1 (0.96, Table 2); however, setting ACTH suppression to  
1 deteriorated the model (∆OFV > 17,000). The inhibition 

Figure 2
Schematic picture of the final sub-models of glucagon, ACTH, and cortisol. 
Dark gray arrows indicate mass transfer while light gray arrows indicate the 
location of the stimulus for dynamics. ksecr, secretion rate; kdegr degradation 
rate constant; t1/2, half-life of glucose delay, f1(G,I|GIR20–60min), the function of 
glucose and insulin affecting glucagon, where insulin effect is influenced by 
the glucose infusion rate at normoglycemia (GIR20–60min); f2(Ge| GIR20–60min), 
the function of delayed glucose affecting ACTH, where the effect is 
influenced by GIR20–60min; f3(ACTH), the function of ACTH affecting cortisol.

This work is licensed under a Creative Commons 
Attribution 4.0 International License.https://doi.org/10.1530/EC-22-0506

https://ec.bioscientifica.com © 2023 the author(s)
Published by Bioscientifica Ltd

Downloaded from Bioscientifica.com at 04/07/2023 06:44:26PM
via free access

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1530/EC-22-0506
https://ec.bioscientifica.com


J Eriksson et al. e22050612:4

Figure 3
Visual predictive check of glucagon (left), ACTH 
(middle), and cortisol (right) vs glucose 
concentrations. The top panels show the 
concentrations of variables, while the bottom 
panels show the proportion of measurements 
below limit of quantification (BLQ). The median 
(solid line) and 2.5th and 97.5th percentiles 
(dashed lines) of the observations (indicated with 
dots) are overlayed with the 95% confidence 
interval of the corresponding percentiles of the 
simulated data (shaded area, 1000 simulations). 
The gray horizontal line indicates the limit of 
quantification.
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Figure 4
Visual predictive check of ACTH (top), cortisol 
(middle), and glucagon (bottom) in the studies by 
Lundqvist (11) (left), Almby (21) (middle), and 
Abrahamsson (12) (right) vs time, with time = 0 
being the start of the hypoglycemia in each study. 
The median (solid line) and 2.5th and 97.5th 
percentiles (dashed lines) of the observations 
(indicated with dots) are overlayed with the 95% 
confidence interval of the corresponding 
percentiles of the simulated data (shaded area, 
1000 simulations).Time [h]
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of ACTH at fasting was similar between all individuals in 
the population (90% CI: 95.51–95.53%).

Cortisol sub-model
ACTH driving a turnover or a pool model with effects 
on ksynth performed similarly in describing cortisol 
(∆OFV = −0.06 for pool model), favoring the turnover 
model with fewer parameters. The pool model with effect 
on ksecr performed worse than the other investigated 
models (∆OFV = 369). Delaying ACTH through an effect 
compartment model did not improve the fit of the model 
significantly (∆OFV = −0.4). Although the estimated Hill 
factor of the Emax function was close to 1, removing the 
parameters deteriorated the fit significantly (∆OFV = 28). 
The final model of cortisol is shown in equation 11. The 
BSV was added to baseline cortisol and the addition of 
BOV did not improve the fit. Glucose effects, additional 
to ACTH, on cortisol resulted in a highly unstable model, 
indicating parameter unidentifiability.

f ACTH E ACTH
EC ACTH

max C

C

C

C C3

50

( ) = ×
+

,

,

g

g g   (11)

where the effect is described by ACTH – the ACTH 
concentrations, Emax,C – the maximal effect of ACTH on 

cortisol, γC – the Hill factor, and EC50,C – the potency of 
ACTH on cortisol. The fit of the model to the data was 
excellent with a good predictive performance of both the 
cortisol data and proportion of data BLQ (Fig. 3 – right 
panels) with 18.9% of the residuals outside the 80% CI, 
evenly distributed around the median. The relationship 
between cortisol secretion and glucose and ACTH is 
shown in Fig. 5C.

Impact of covariates on model parameters
According to the XV-SCM, the significant relationships 
were GIR20–60min on glucose IC50 of ACTH (identified in two 
data-splits), with a secondary relationship of GIR20–60min 
or BMI on insulin IC50 of glucagon (identified in one data-
split each). The inability to separate between GIR20–60min 
and BMI was expected given the high correlation between 
BMI and GIR20–60min (corr=-56%).

With FREM, the four strongest correlations (≥ 50%) 
between parameter and covariates were: 1) GIR20–60min on 
glucose IC50 of ACTH (corr = −56%), 2) BMI on insulin 
IC50 of glucagon (corr = 53%), 3) HOMA-IR on glucose IC50 
of ACTH (corr = 51%), and 4) GIR20–60min on insulin IC50 
of glucagon (corr = −50%). Correlations between BMI/

Figure 5
Secretion of glucagon (A), ACTH (B), and cortisol 
(C) vs glucose as well as glucagon secretion vs 
insulin (D), ACTH vs delayed glucose (E), and 
cortisol vs ACTH (F). Points represent individual 
model predictions, colored by GIR20–60min and the 
solid colored, lines are smooths through the data, 
grouped by GIR20–60min. The black dashed, vertical 
line indicates the median of the x-axis variable of 
individuals with BMI ≤ 25 kg/m2 at baseline, that 
is 5.1 mmol/L glucose, 4.4 µU/mL insulin, or 2.7 
pmol/L ACTH.
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GIR20–60min and HOMA-IR/GIR20–60min were high: −56% and 
−69%, respectively.

An SCM, with a 5% significance level of forward 
inclusion and a 1% significance level of backward 
elimination, resulted in the inclusion of two relationships: 
GIR20–60min on insulin IC50 of glucagon and GIR20–60min on 
glucose IC50 of ACTH.

All covariate methods (XV-SCM, FREM, and SCM) 
indicated only relationships with insulin IC50 of glucagon 
and glucose IC50 of ACTH. GIR20–60min came across as a 
strong covariate for the relationship with ACTH; all other 
covariates were ranked secondary. GIR20–60min was also 
a strong predictor for the relationship with glucagon, 
although BMI was often ranked similarly. Combining 
the results of all covariate methods, considering the 
convenience of model predictions, GIR20–60min was chosen 
as the sole predictor in the final model. The relationships 
were as described in equations 12 and 13.

IC IC eI I GIR
GIR GIRIC I

50 50 8 13

8 1350 20 60

, , , .

.,= ×=
× -( )-   (12)

IC IC eA A GIR
GIR GIRIC A

50 50 8 13

8 1350 20 60

, , , .

.,= ×=
× -( )-   (13)

Where IC50,I,GIR=8.13 and IC50,A,GIR=8.13 are the potencies of 
insulin on glucagon and glucose on ACTH, respectively, 

for an individual with GIR20–60min=8.13 mg/kg-LBM/min. 
GIRIC50,I and GIRIC50,A are the covariate effects of GIR20–60min 
on the IC50:s.

GIR20–60min varied greatly, and the interquartile range 
of GIR20–60min was 4.5–10.8 mg/kg-LBM/min. The upper 
and lower quartiles of the pooled cohort were used in 
figures to illustrate insulin-sensitive (GIR20–60min ≥ 10.8 mg/
kg-LBM/min) and insulin-resistant (≤4.5 mg/kg-LBM/min) 
individuals, respectively. Thus, the study population was 
divided into three groups for strictly illustrative purposes. 
As illustrated in Fig. 6, individuals with high insulin 
sensitivity had sustained ACTH suppression at lower 
glucose concentrations compared to individuals with 
insulin resistance. The glucose concentration required for 
90% inhibition of ACTH was 3.1 mmol/L (90% prediction 
interval ranged 2.7–3.6 mmol/L) and 3.5 mmol/L (3.1–
4.0 mmol/L) for insulin-sensitive and insulin-resistant 
individuals, respectively.

For glucagon inhibition, the impact of GIR20–60min was 
found on the relationship between glucagon and insulin 
(Fig. 7). In individuals with normal insulin sensitivity, 
sustained glucagon suppression was seen with lower 
insulin concentrations compared to individuals with 
insulin resistance, and glucagon is thus not suppressed 
to the same extent for high insulin concentrations 

Table 2 Table of parameter estimates of the final model. Presented with typical parameter of population, between-subject (BSV) 
and between-occasion variability (BOV); the last two reported as coefficient of variation in %. All parameters are reported with 
relative standard error (RSE) in %.

Parameter Description Typical parameter (RSE) BSV (RSE) BOV (RSE)

Gn0 Baseline glucagon concentration (pmol/L) 8.35 (2.38) 39.6 (5.60) 20.0 (5.42)
kout, G Removal rate of glucagon (min−1) 0.0612 (6.29) - -
Frac Fraction of glucose contribution to glucagon inhibition 0.750 (2.35) - -
IC50,G Potency of glucose on glucagon secretion (mmol/L) 2.91 (3.02) 23.4 (9.22) -
γG Shape factor of glucose effect on glucagon 5.26 (3.94) - -
IC50,I,GIR=8.13 Potency of insulin on glucagon secretion (µU/mL) 5.51 (11.3) 93.2 (6.50) -
GIRIC50,I Effect of GIR20–60min on insulin potency (% mg/kg/min) −15.7 (19.3) - -
∑G Residual error of glucagon (%) 33.8 (5.07) - -
ACTH0 Baseline ACTH concentration (pmol/L) 2.94 (4.76) 29.4 (13.0) 8.10 (11.4)
kout, A Removal rate of ACTH (min-1) 0.0709 (14.5) - -
t1/2 Half-life of delay of glucose effect on ACTH (min) 8.68 (6.56) - -
Imax,A Maximal glucose effect on ACTH 0.941 (1.11) - -
IC50,A,GIR=8.13 Potency of glucose on ACTH secretion (mmol/L) 2.85 (1.70) 7.76 (6.96) -
γA Shape factor of glucose effect on ACTH 20.9 (8.74) - -
GIRIC50,A Effect of GIR20–60min on glucose potency (% mg/kg/min) −1.55 (16.4) - -
∑A Residual error of ACTH (%) 38.1 (10.7) - -
Cort0 Baseline cortisol concentration (nmol/L) 207 (3.60) 25.1 (9.55) -
kout, C Removal rate of cortisol (min-1) 0.0608 (9.20) - -
EmaxC Maximal ACTH effect on cortisol secretion 41.8 (7.40) - -
IC50,C Potency of ACTH on cortisol secretion (pmol/L) 6.90 (5.12) - -
γC Shape factor of ACTH effect on cortisol 1.29 (2.30) - -
∑C Residual error of cortisol (%) 29.3 (5.79) - -
fAdd Multiplicative factor of residual error of data BLQ 2.01 (7.75) - -

BLQ, below limit of quantification.
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in individuals with insulin resistance. Consequently, 
fasting glucagon was elevated for individuals with insulin 
resistance due to insufficient glucagon suppression from 
insulin at normoglycemia. The insulin concentration 
required for 90% inhibition of glucagon at 5 mmol/L 
glucose was 16.3 and 43.4 µU/mL for insulin-sensitive 
and insulin-resistant individuals, respectively. The 
glucose-insulin concentrations required for 90% glucagon 
inhibition clearly shifted downwards in insulin-resistant 
individuals (Fig. 7D, green line). The code for the final 
population model is available on Github (https://github.
com/miakjellsson/GN_ACTH_Cor).

Discussion

In this work, data from three previous clamp studies were 
pooled (11, 12, 21), exploring a wide glucose range, from 
profound hypoglycemia to marked hyperglycemia. A 
population model-based analysis was used to quantify 
determinants of glucose- and insulin-dependent counter-
regulatory hormone secretion. It was hypothesized that 
individuals who are prone to type 2 diabetes, as reflected 
by insulin resistance, have an elevated glycemic setpoint 
for homeostatic regulation and that this may be important 
for the progression to type 2 diabetes.

As a data-driven modeling approach was used, the 
final model of glucagon, ACTH, and cortisol represented 
the best fit for the pooled data. The benefit of a data-driven 
approach is that model attributes are included only when 
supported by data, rendering a robust and parsimonious 
model. The disadvantage is that the resulting model 
structure is dependent on the information in the data. 
Consequently, the model structure of a biological 
system, that is the HPA axis, may differ between different 
publications. Several population models of glucagon, 
ACTH, and cortisol have previously been published (16, 
17, 20). The model diversity illustrated this phenomenon. 
It is, however, reassuring that the main model structure 
of the final model was similar to other published models 
(16), with the main differences being the lack of circadian 
rhythm (16) and the insulin resistance effects.

As all data used in this study were collected in 
the morning, without longer duration of collection, 
estimation of circadian rhythm was not feasible, which 
limits the use of the model for whole-day simulations. 
Combination of the circadian rhythm from other models, 
for example the ACTH model by Lönnebo and colleagues 
(16) combined with the final model presented, could 
resolve this limitation.

The main strength of the pooled data was the range of 
between-subject insulin resistance and the within-subject 
glucose and insulin concentrations, which has not been 
previously modeled. However, as the population size was 
limited, and to reduce the risk of over-interpretation, 
XV-SCM and FREM (23, 24) were utilized to identify 
parameters associated with insulin resistance and/or 
obesity.

For glucagon, insulin resistance was associated with 
a shift in estimated IC50 of insulin and was similar to the 
fasting insulin for insulin-sensitive individuals with a 
GIR20–60min ≥ 10.8 mg/kg-LBM/min of 5.1 µU/mL. Thus, 
insulin resistance impacted fasting glucagon through 
insulin. However, whether GIR20–60min or BMI is the 
best predictor requires further investigation. For ACTH, 
insulin resistance was associated with a shift in IC50 of 
glucose, while cortisol dynamics were accounted for by 
ACTH. Thus, a change in the hypoglycemic threshold for 
activation of counter-regulatory responses in individuals 
with insulin resistance was supported. The estimate of 
IC50 of glucose (2.85 mmol/L) on ACTH was similar to 
the cut-off for pathological hypoglycemia of 3 mmol/L 
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Figure 6
Inhibition of ACTH secretion by glucose, illustrated for insulin-sensitive 
(GIR20–60min ≥ 10.8 mg/kg-LBM/min; green) and insulin-resistant (GIR20–60min 

≤ 4.6 mg/kg-LBM/min; blue) individuals. The blue and green solid lines 
indicate the medians and the 90% confidence interval is shown as a 
shaded area. The horizontal line indicates 90% inhibition.
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(27). Exaggerated ACTH/cortisol responses can, therefore, 
potentially contribute to aggravated insulin resistance and 
long-term glucose elevation. Taken together, the increased 
glucagon secretion across a wide glycemic range and 
the increased cortisol axis activity in the hypoglycemic 
and normoglycemic range are both likely contributors 
to insulin resistance and potentially to type 2 diabetes 
development, as illustrated in Fig. 8.

Glucagon

Lundqvist and colleagues (11) found no difference in 
hypoglycemic glucagon secretion per se between overweight 

and lean individuals, although less hyperglycemia-induced 
suppression was observed in overweight individuals. 
The present pooled analysis corroborates previously 
reported associations between insulin resistance and 
hyperglucagonemia (28, 29) and extends the validity 
of these observations to a broad glycemic range 28, 29 
(1.9–16 mmol/L). Moreover, the analysis suggests that 
hyperglucagonemia was driven by individual differences 
in insulin-mediated suppression of glucagon independent 
of glucose levels. This may be related to insulin resistance 
of pancreatic alpha cells which has been demonstrated in 
type 2 diabetes (30). Information about intra-islet insulin 
concentrations would be of interest. However, obtaining 
such measures in vivo is challenging and it was not available 
in this study. Morettini and colleagues (31) developed a 
model of glucagon, predicting local insulin concentrations 
from C-peptide measurement in an oral glucose tolerance 
test. Given the different study conditions, parameters are 
not directly comparable between the models. Apart from 
study conditions, Moretti’s model includes an insulin 
stimulation of elimination of glucagon, while our model 
contains an insulin inhibition of production of glucagon. 
However, these approaches are essentially the same 
mathematically.

Cortisol axis

A major finding from this pooled analysis was that the 
insulin-resistant population had a shifted response of the 
cortisol axis to hypoglycemia; 50% response in ACTH 
was achieved at 3.0 mmol/L for the insulin-resistant 
population while the same was achieved at 2.7 mmol/L 
for the insulin-sensitive population. Glucose-stimulated 
ACTH secretion may be directly mediated through ACTH-
producing pituitary cells or indirectly via hypothalamic 
glucose-sensing neurons that modulate the secretion of 
CRH, which in turn stimulates pituitary ACTH secretion 
(32, 33). The latter was supported by the final models 
estimated delay of glucose-stimulus on ACTH. It is, 
therefore, likely that glucose-sensing and regulation by 
the hypothalamus, and potentially other brain regions, 
contribute to the elevated responses of the cortisol axis 
during hypoglycemia among individuals with insulin 
resistance. When assessing the plasma glucose–ACTH 
relationship, the combination of the delayed glucose and 
the steepness of the relationship (as indicated by the Hill 
factor) creates a model behavior, where hypoglycemic 
response of ACTH (plasma) is delayed, creating an 
apparent lag-phase between the glucose lowering and the 
stimulation of ACTH secretion.. Although some caution is 
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Figure 7
Inhibition of glucagon secretion by insulin for (A) hypo-, (B) normo-, and 
(C) hyperglycemia as well as (D) the relationship between glucose and 
insulin for 90% inhibition of glucagon, illustrated for insulin-sensitive 
(GIR20–60min ≥ 10.8 mg/kg-LBM/min; green) and insulin-resistant (GIR20–60min 

≤ 4.6 mg/kg-LBM/min; blue) individuals. The blue and green solid lines 
indicate the medians, and the 90% confidence interval is shown as a 
shaded area. The horizontal line indicates 90% inhibition.
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warranted regarding the transferability of these results to 
the real-world setting, the fact that the glycemic threshold 
for ACTH response was within the physiologically 
plausible range for insulin-resistant individuals does imply 
importance for the day-to-day glucose metabolism in these 
individuals. The cortisol axis response was associated with 
the GIR20–60min through ACTH and was independent of 
BMI in the final model, which points to a potential role of 
ACTH in the development of insulin resistance. However, 
longitudinal studies of larger cohorts, designed for this 
purpose, would be required to support this hypothesis.

The dynamics of cortisol secretion were found to be 
fully explained by ACTH-stimulus, suggesting an absence 
of ACTH-independent pathways for the regulation of 
cortisol secretion under the employed experimental 
conditions. Such pathways have been proposed, including 
stimulation by catecholamines (34) and cytokines (35, 
36). While these pathways may explain the dissociation of 
cortisol and ACTH relationships in critical illness and post-
surgery (35, 36), they have most likely limited importance 
in this context.

Other neuroendocrine factors

Additional glucose-elevating neuroendocrine pathways, 
such as the GH axis and the sympathoadrenergic system, 
may be important in the development of insulin resistance. 
Insulin resistance has been found previously to be 
associated with a less dynamic hypoglycemic autonomic 
nervous system response, characterized by both a smaller 
inhibition of parasympathetic nerve activity (PASY) and 

smaller activation of sympathetic nerve activity (SY) (11). 
Visceral adiposity and insulin resistance have been linked to 
an increased SY/PASY activity ratio during normoglycemic 
conditions (37, 38, 39). The attenuated dynamics of SY 
and PASY activity during hypoglycemia in individuals 
who are overweight and insulin-resistant may potentially 
contribute to elevated glucose, although mechanisms are 
not understood.

We and others have previously shown that GH is 
reduced in obesity but rises upon weight loss (11, 40). 
Likewise, the hypoglycemic GH response increases 
following gastric bypass surgery (12, 21), which 
paradoxically would be expected to promote elevation of 
glucose concentration.

Taken together, many neuroendocrine pathways may 
contribute to altered responses to glucose fluctuations in 
individuals with insulin resistance, but their respective 
roles need further validation in large prospective 
cohorts. It was previously reported that elevated counter-
regulatory neuroendocrine responses to hypoglycemia 
operate in type 2 diabetes (41), and this may support their 
contribution to the development and/or maintenance of 
long-term hyperglycemia. Of note, the current work does 
not include modeling of insulin secretion, as this is well-
studied (42).

An overview of proposed crosstalk between endocrine 
organs is shown in Fig. 8. With regards to inference about 
causality, we acknowledge that the current analysis is 
cross-sectional and does not prove that the demonstrated 
hormonal dysregulations lead to insulin resistance, albeit 
this appears likely. Hormonal perturbations may instead 

Figure 8
Hypothesized contribution of general 
hyperglucagonemia and augmented ACTH/
cortisol responses to the development of insulin 
resistance and type 2 diabetes. Created with 
Biorender.com.
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be consequences of insulin resistance or its associated 
conditions. Longitudinal cohort studies, ideally including 
specific interventions, would shed light on causality.

Limitations

Albeit data were pooled from three clamp studies, the 
sample size in this work is limited. The data are cross-
sectional, and larger, longitudinal and interventional 
studies are needed to establish a contribution by glucagon 
and HPA axis dysregulation in the development of insulin 
resistance and type 2 diabetes. Furthermore, we only have 
data of plasma glucose and plasma insulin. For insulin 
in particular, the impact of high local concentrations 
produced by the beta cells under physiological conditions 
will directly inhibit alpha cells and the glucagon 
secretion via paracrine effects within the pancreatic islets. 
Notwithstanding the lack of such assessment, it can be 
assumed that paracrine effects are similar to those of 
systemic insulin entering the pancreas and its islets from 
the arterial circulation, as in our clamp settings. Further, 
other metabolites, such as free fatty acids and amino acids 
and their derivatives can directly or indirectly influence 
the secretion of the investigated counter-regulatory 
hormones and they may thus also modify the effects of 
glucose and insulin. The experiments were conducted in 
the fasting state with standardized insulin and/glucose 
concentrations, but nonetheless, the interplay with such 
metabolites may differ between individuals.

Conclusion

In conclusion, a novel population model was developed 
and applied to pooled cohorts of participants in glucose 
clamps. The results indicated that insulin resistance was 
independently associated with: i) a general increase in 
glucagon secretion across a broad glycemic range and ii) 
an increased ACTH and, consequently, cortisol response 
during hypoglycemia manifested by an exaggerated 
response to mild glucose lowering. The elevated 
glucagon secretion may largely be explained by alpha 
cell dysfunction where paracrine and neuroendocrine 
factors may contribute. Conversely, the ACTH/cortisol 
dysregulation is expected to be of central origin involving 
the hypothalamus and adjacent brain regions. Thus, a 
chronic increase in glucagon together with intermittent 
cortisol responses during near-hypoglycemic episodes 
are likely to promote and maintain insulin resistance. 
Therefore, the observed hormonal dysregulation may in 

turn also contribute to the gradual elevation of glycemia 
and in due course possibly to the establishment of type 2 
diabetes.
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