12 research outputs found

    Half a century of amyloids: past, present and future

    Get PDF
    Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological manifestations of amyloidosis to stimulate continued development of new therapeutics. In basic science and engineering, the cross-ß architecture has been a constant thread underlying the structural characteristics of pathological and functional amyloids, and realizing that amyloid structures can be both pathological and functional in nature has fuelled innovations in artificial amyloids, whose use today ranges from water purification to 3D printing. At the conclusion of a half century since Eanes and Glenner's seminal study of amyloids in humans, this review commemorates the occasion by documenting the major milestones in amyloid research to date, from the perspectives of structural biology, biophysics, medicine, microbiology, engineering and nanotechnology. We also discuss new challenges and opportunities to drive this interdisciplinary field moving forward. This journal i

    Mitigation of Amyloidosis with Nanomaterials.

    Get PDF
    Amyloidosis is a biophysical phenomenon of protein aggregation with biological and pathogenic implications. Among the various strategies developed to date, nanomaterials and multifunctional nanocomposites possessing certain structural and physicochemical traits are promising candidates for mitigating amyloidosis in vitro and in vivo. The mechanisms underpinning protein aggregation and toxicity are introduced, and opportunities in materials science to drive this interdisciplinary field forward are highlighted. Advancement of this emerging frontier hinges on exploitation of protein self-assembly and interactions of amyloid proteins with nanoparticles, intracellular and extracellular proteins, chaperones, membranes, organelles, and biometals

    Pancreatic Beta-Cell Membrane Fluidity and Toxicity Induced by Human Islet Amyloid Polypeptide Species.

    Get PDF
    Aggregation of human islet amyloid polypeptide (hIAPP) into fibrils and plaques is associated with pancreatic β-cell loss in type 2 diabetes (T2D). However, due to the rapidness of hIAPP conversion in aqueous phase, exactly which hIAPP species is responsible for the observed toxicity and through what mechanisms remains ambiguous. In light of the importance of understanding hIAPP toxicity for T2D here we show a biophysical scheme based on the use of a lipophilic Laurdan dye for examining MIN6 cell membranes upon exposure to fresh and oligomeric hIAPP as well as mature amyloid. It has been found that all three hIAPP species, especially fresh hIAPP, enhanced membrane fluidity and caused losses in cell viability. The cell generation of reactive oxygen species (ROS), however, was the most pronounced with mature amyloid hIAPP. The correlation between changes in membrane fluidity and cell viability and their lack of correlation with ROS production suggest hIAPP toxicity is elicited through both physical and biochemical means. This study offers a new insight into β-cell toxicity induced by controlled hIAPP species, as well as new biophysical methodologies that may prove beneficial for the studies of T2D as well as neurological disorders.info:eu-repo/semantics/publishe

    Inhibition of hIAPP Amyloid Aggregation and Pancreatic β‐Cell Toxicity by OH‐Terminated PAMAM Dendrimer

    Get PDF
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137295/1/smll201502317.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137295/2/smll201502317-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137295/3/smll201502317_am.pd

    Pan-European inter-laboratory studies on a panel of in vitro cytotoxicity and pro-inflammation assays for nanoparticles

    No full text
    The rapid development of nanotechnologies and increased production and use of nanomaterials raise concerns about their potential toxic effects for human health and environment. To evaluate the biological effects of nanomaterials, a set of reliable and reproducible methods and development of standard operating procedures (SOPs) is required. In the framework of the European FP7 NanoValid project, three different cell viability assays (MTS, ATP content, and caspase-3/7 activity) with different readouts (absorbance, luminescence and fluorescence) and two immune assays (ELISA of pro-inflammatory cytokines IL1-β and TNF-α) were evaluated by inter-laboratory comparison. The aim was to determine the suitability and reliability of these assays for nanosafety assessment. Studies on silver and copper oxide nanoparticles (NPs) were performed, and SOPs for particle handling, cell culture, and in vitro assays were established or adapted. These SOPs give precise descriptions of assay procedures, cell culture/seeding conditions, NPs/positive control preparation and dilutions, experimental well plate preparation, and evaluation of NPs interference. The following conclusions can be highlighted from the pan-European inter-laboratory studies: Testing of NPs interference with the toxicity assays should always be conducted. Interference tests should be designed as close as possible to the cell exposure conditions. ATP and MTS assays gave consistent toxicity results with low inter-laboratory variability using Ag and CuO NPs and different cell lines and therefore, could be recommended for further validation and standardization. High inter-laboratory variability was observed for Caspase 3/7 assay and ELISA for IL1-β and TNF-α measurements.by Superb K. Misra et al
    corecore