18 research outputs found

    Cygnus A super-resolved via convex optimisation from VLA data

    Get PDF
    We leverage the Sparsity Averaging Reweighted Analysis (SARA) approach for interferometric imaging, that is based on convex optimisation, for the super-resolution of Cyg A from observations at the frequencies 8.422GHz and 6.678GHz with the Karl G. Jansky Very Large Array (VLA). The associated average sparsity and positivity priors enable image reconstruction beyond instrumental resolution. An adaptive Preconditioned Primal-Dual algorithmic structure is developed for imaging in the presence of unknown noise levels and calibration errors. We demonstrate the superior performance of the algorithm with respect to the conventional CLEAN-based methods, reflected in super-resolved images with high fidelity. The high resolution features of the recovered images are validated by referring to maps of Cyg A at higher frequencies, more precisely 17.324GHz and 14.252GHz. We also confirm the recent discovery of a radio transient in Cyg A, revealed in the recovered images of the investigated data sets. Our matlab code is available online on GitHub.Comment: 14 pages, 7 figures (3/7 animated figures), accepted for publication in MNRA

    R2D2: Deep neural network series for near real-time high-dynamic range imaging in radio astronomy

    Full text link
    We present a novel AI approach for high-resolution high-dynamic range synthesis imaging by radio interferometry (RI) in astronomy. R2D2, standing for "{R}esidual-to-{R}esidual {D}NN series for high-{D}ynamic range imaging", is a model-based data-driven approach relying on hybrid deep neural networks (DNNs) and data-consistency updates. Its reconstruction is built as a series of residual images estimated as the outputs of DNNs, each taking the residual dirty image of the previous iteration as an input. The approach can be interpreted as a learned version of a matching pursuit approach, whereby model components are iteratively identified from residual dirty images, and of which CLEAN is a well-known example. We propose two variants of the R2D2 model, built upon two distinctive DNN architectures: a standard U-Net, and a novel unrolled architecture. We demonstrate their use for monochromatic intensity imaging on highly-sensitive observations of the radio galaxy Cygnus~A at S band, from the Very Large Array (VLA). R2D2 is validated against CLEAN and the recent RI algorithms AIRI and uSARA, which respectively inject a learned implicit regularization and an advanced handcrafted sparsity-based regularization into the RI data. With only few terms in its series, the R2D2 model is able to deliver high-precision imaging, significantly superior to CLEAN and matching the precision of AIRI and uSARA. In terms of computational efficiency, R2D2 runs at a fraction of the cost of AIRI and uSARA, and is also faster than CLEAN, opening the door to real-time precision imaging in RI.Comment: 10 pages, 5 figures, 1 Tabl

    Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy

    Full text link
    Next-generation radio surveys are about to transform radio astronomy by discovering and studying tens of millions of previously unknown radio sources. These surveys will provide new insights to understand the evolution of galaxies, measuring the evolution of the cosmic star formation rate, and rivalling traditional techniques in the measurement of fundamental cosmological parameters. By observing a new volume of observational parameter space, they are also likely to discover unexpected new phenomena. This review traces the evolution of extragalactic radio continuum surveys from the earliest days of radio astronomy to the present, and identifies the challenges that must be overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201

    LOFAR 150-MHz observations of SS 433 and W50

    Get PDF
    We present Low-Frequency Array (LOFAR) high-band data over the frequency range 115-189 MHz for the X-ray binary SS 433, obtained in an observing campaign from 2013 February to 2014 May. Our results include a deep, wide-field map, allowing a detailed view of the surrounding supernova remnant W50 at low radio frequencies, as well as a light curve for SS 433 determined from shorter monitoring runs. The complex morphology of W50 is in excellent agreement with previously published higher frequency maps; we find additional evidence for a spectral turnover in the eastern wing, potentially due to foreground free-free absorption. Furthermore, SS 433 is tentatively variable at 150 MHz, with both a debiased modulation index of 11 per cent and a Χ 2 probability of a flat light curve of 8.2 × 10 -3 . By comparing the LOFAR flux densities with contemporaneous observations carried out at 4800 MHz with the RATAN-600 telescope, we suggest that an observed ~0.5-1 Jy rise in the 150-MHz flux density may correspond to sustained flaring activity over a period of approximately 6 months at 4800 MHz. However, the increase is too large to be explained with a standard synchrotron bubble model. We also detect a wealth of structure along the nearby Galactic plane, including the most complete detection to date of the radio shell of the candidate supernova remnant G38.7-1.4. This further demonstrates the potential of supernova remnant studies with the current generation of low-frequency radio telescopes

    Radio Continuum Surveys with Square Kilometre Array Pathfinders

    Get PDF
    In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), e-MERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), MeerKAT (South Africa), and the Murchison Widefield Array. Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. To achieve these exciting scientific goals, many technical challenges must be addressed by the survey instruments. Given the limited resources of the global radio-astronomical community, it is essential that we pool our skills and knowledge. We do not have sufficient resources to enjoy the luxury of re-inventing wheels. We face significant challenges in calibration, imaging, source extraction and measurement, classification and cross-identification, redshift determination, stacking, and data-intensive research. As these instruments extend the observational parameters, we will face further unexpected challenges in calibration, imaging, and interpretation. If we are to realise the full scientific potential of these expensive instruments, it is essential that we devote enough resources and careful study to understanding the instrumental effects and how they will affect the data. We have established an SKA Radio Continuum Survey working group, whose prime role is to maximise science from these instruments by ensuring we share resources and expertise across the projects. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return

    Cygnus A jointly calibrated and imaged via non-convex optimization from VLA data

    No full text
    Radio interferometric (RI) data are noisy under-sampled spatial Fourier components of the unknown radio sky affected by direction-dependent antenna gains. Failure to model these antenna gains accurately results in a radio sky estimate with limited fidelity and resolution. The RI inverse problem has been recently addressed via a joint calibration and imaging approach which consists in solving a non-convex minimisation task, involving suitable priors for the DDEs, namely temporal and spatial smoothness, and sparsity for the unknown radio map via an 1\ell_1-norm prior, in the context of realistic RI simulations. Building on these developments, we propose to promote sparsity of the radio map via a log-sum prior, enforcing sparsity more strongly than the 1\ell_1-norm. The resulting minimisation task is addressed via a sequence of non-convex minimisation tasks composed of re-weighted 1\ell_1 image priors, which are solved approximately. We demonstrate the efficiency of the approach on RI observations of the celebrated radio galaxy Cygnus~A obtained with the Karl G. Jansky Very Large Array at X, C, and S bands. More precisely, we showcase that the approach enhances data fidelity significantly while achieving high resolution high dynamic range radio maps, confirming the suitability of the priors considered for the unknown DDEs and radio image. As a clear qualitative indication of the high fidelity achieved by the data and the proposed approach, we report the detection of three background sources in the vicinity of Cyg~A, at S band.Comment: 22 pages,13 figures. Submitted to MNRA

    Cygnus A jointly calibrated and imaged via non-convex optimisation from JVLA data

    No full text
    Radio interferometric (RI) data are noisy under-sampled spatial Fourier components of the unknown radio sky affected by direction-dependent antenna gains. Failure to model these antenna gains accurately results in a radio sky estimate with limited fidelity and resolution. The RI inverse problem has been recently addressed via a joint calibration and imaging approach which consists in solving a non-convex minimisation task, involving suitable priors for the DDEs, namely temporal and spatial smoothness, and sparsity for the unknown radio map via an 1\ell_1-norm prior, in the context of realistic RI simulations. Building on these developments, we propose to promote sparsity of the radio map via a log-sum prior, enforcing sparsity more strongly than the 1\ell_1-norm. The resulting minimisation task is addressed via a sequence of non-convex minimisation tasks composed of re-weighted 1\ell_1 image priors, which are solved approximately. We demonstrate the efficiency of the approach on RI observations of the celebrated radio galaxy Cygnus~A obtained with the Karl G. Jansky Very Large Array at X, C, and S bands. More precisely, we showcase that the approach enhances data fidelity significantly while achieving high resolution high dynamic range radio maps, confirming the suitability of the priors considered for the unknown DDEs and radio image. As a clear qualitative indication of the high fidelity achieved by the data and the proposed approach, we report the detection of three background sources in the vicinity of Cyg~A, at S band.Comment: 22 pages,13 figures. Submitted to MNRA
    corecore