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ABSTRACT
We leverage the Sparsity Averaging Re-weighted Analysis approach for interferometric imag-
ing, that is based on convex optimization, for the super-resolution of Cyg A from observations
at the frequencies 8.422 and 6.678 GHz with the Karl G. Jansky Very Large Array (VLA). The
associated average sparsity and positivity priors enable image reconstruction beyond instru-
mental resolution. An adaptive Preconditioned primal-dual algorithmic structure is developed
for imaging in the presence of unknown noise levels and calibration errors. We demonstrate
the superior performance of the algorithm with respect to the conventional CLEAN-based meth-
ods, reflected in super-resolved images with high fidelity. The high-resolution features of the
recovered images are validated by referring to maps of Cyg A at higher frequencies, more
precisely 17.324 and 14.252 GHz. We also confirm the recent discovery of a radio transient
in Cyg A, revealed in the recovered images of the investigated data sets. Our MATLAB code is
available online on GitHub.

Key words: techniques: image processing – techniques: interferometric – galaxies: individ-
ual: Cygnus A.

1 IN T RO D U C T I O N

New imaging techniques and algorithmic structures for radio inter-
ferometry have been extensively investigated in the recent years. The
main objectives are: first to meet the next-generation instruments’
capabilities in producing maps of the radio sky with unprecedented
depth and resolution and secondly to cope with the sheer volume
of the acquired data. Recently proposed compressive sensing tech-
niques using convex optimization for radio interferometric (RI)
imaging have been shown to be very promising, potentially su-
perseding the standard CLEAN-based techniques in terms of quality
(e.g. Högbom 1974; Clark 1980; Schwab & Cotton 1983; Wakker
& Schwarz 1988; Bhatnagar & Cornwell 2004; Cornwell, Golap
& Bhatnagar 2008), while, in principle, showing scalability to big
data. The general approach consists in minimizing a sum of convex
functions. These include data fidelity terms and relevant regulariza-
tions for RI images, such as sparsity and positivity (typically for an
intensity image). In particular, Carrillo, McEwen & Wiaux (2012)
proposed the Sparsity Averaging Re-weighted Analysis (SARA)
approach, where sparsity-by-analysis of the sky estimate is pro-
moted in a collection of bases by solving consecutive re-weighted
�1 problems. Several algorithms based on convex optimization have
been proposed to solve the SARA minimization problem, such as
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Douglas-Rachford splitting algorithm (Carrillo et al. 2012) and the
Simultaneous Direction Method of Multipliers (SDMM; Carrillo,
McEwen & Wiaux 2014). Onose et al. (2016) have proposed a
primal-dual (PD) algorithmic structure for RI imaging, in the con-
text of which full splitting of the different functions involved is
achieved, resulting in a highly parallelizable algorithm.

More recently, Onose, Dabbech & Wiaux (2017) have proposed
an accelerated PD algorithmic structure reconciling two common
data weighting schemes in RI imaging, namely natural and uni-
form weighting. On the one hand, natural weighting, by accounting
only for the noise statistics, provides optimal sensitivity. On the
other hand, uniform weighting, by additionally incorporating the
density of the sampling, modifies the effective sampling and con-
sequently, the associated point spread function (PSF), with the aim
of optimizing the resolution achieved within a finite number of
iterations. Yet, this scheme reduces the overall sensitivity, since
the scarcely sampled–thus noisy–measurements at the high spa-
tial frequencies are overweighted, while the highly sampled–thus
sensitive–measurements at the low spatial frequencies are down-
weighted. In the context of the PD algorithm, the effect of the
density of the sampling is instead cast in terms of the convergence
speed. The algorithmic structure proposed in Onose et al. (2017),
dubbed preconditioned primal-dual (PPD) enforces data fidelity on
the naturally weighted data via non-Euclidean proximity opera-
tors, where projections on to the �2 balls are generalized as projec-
tions on to �2 ellipsoids incorporating the uniform weights. These
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ellipsoid projections provide accelerated convergence, thereby en-
abling simultaneous optimization of the dynamic range and resolu-
tion of the recovered image. In summary, the versatility of convex
optimization with respect to the choice of both the regularization
priors (e.g. SARA) and the algorithmic structure (e.g. PPD) has
opened the door to tremendous potential for enhancement of the
quality of RI imaging when compared to CLEAN-based techniques.

In this paper, we leverage the PPD algorithmic structure for
solving the SARA minimization problem and provide high-fidelity,
high-resolution imaging of Cyg A from Karl G. Jansky Very Large
Array (VLA) observations at the frequencies 8.422 and 6.678 GHz.
In addition to the thermal noise, the two data sets are corrupted with
multiplicative calibration errors, which are likely due to the an-
tennas’ pointing errors. These are particularly important for strong
radio sources such as Cyg A and indeed tend to dominate the ther-
mal noise. We propose an adaptive version of the PPD algorithmic
structure aiming for the estimation of the unknown levels of the
noise and calibration errors in the data. On the one hand, high-
fidelity maps of Cyg A at both frequencies are achieved thanks to
the accurate estimation of the �2 constraints on the data. On the
other hand, super-resolved representations of Cyg A are obtained
thanks to the average sparsity-promoting and positivity priors of
SARA. Comparison with the standard Multi-Scale CLEAN algorithm
(MS-CLEAN) (Cornwell 2008) indicates the superior performance
of the adaptive PPD algorithm. Furthermore, the recent discovery
of a faint transient radio source in the inner core of Cyg A, reported
in Perley et al. (2017), is confirmed at the reconstructed maps of
adaptive PPD.

The remainder of the article is structured as follows. In Section 2,
we revisit the RI inverse imaging problem and the compressive
sensing-based image reconstruction approach SARA. In addition,
we briefly describe the PPD algorithmic structure solving for SARA.
In Section 3, we present the adaptive PPD algorithm. Cyg A imaging
results from two data sets are presented in Section 4. The achieved
super-resolution with adaptive PPD is analysed in Section 5. We
also report the detection of a secondary black hole in the super-
resolved images of adaptive PPD. Finally, conclusions are stated in
Section 6.

2 SPA R S E R I IM AG I N G TO DAT E

In this section, we revisit the RI measurement model and the min-
imization problem to recover radio images that is based on sparse
representations and denoted SARA. We also review the PD algo-
rithmic structure solving the SARA minimization problem, recently
proposed in Onose et al. (2017).

2.1 RI imaging problem

RI data are Fourier measurements of the sky intensity modulated
with the so-called Direction Dependent Effects (DDEs).1 These
include the primary beam of the instrument and distortions induced
by the propagation medium. Let (u, w) be the components of a
baseline in units of the wavelength, with w being the coordinate
in the direction of the line of sight and u = (u, v) lying on its

1 A particular case of DDEs are the so-called direction-independent ef-
fects (DIEs). These are constant complex-valued modulations in the image
domain.

perpendicular plane. Assuming a monochromatic and non-polarized
radiation, an RI measurement V (u, w) reads

V (u, w) =
∫

G(l, w)I (l)e−2iπu·l d2l, (1)

where l are the coordinates of a radio point source in the plane
tangent to the celestial sphere and I (l) is the unknown sky surface
brightness at the position l . G(l, w) stands for the DDEs, including
the w-modulation that is resulting from the non-coplanarity of the

radio interferometer and is given by c(w, l) = e−2iπw(
√

1−|l|2−1).
The problem of recovering the sky intensity image from the radio
measurements is an inverse problem and its discretized version
reads

y = �x + n, with � = �GFZS, (2)

where x ∈ R
N
+ is the intensity image of interest and � ∈ C

M×N

is the mapping operator from the image domain to the visibility
space. The data y are the naturally weighted RI measurements i.e.
y = � ỹ, where ỹ ∈ C

M are the RI measurements and the operator
� ∈ R

M×M
+ accounts for the noise statistics and is a diagonal ma-

trix whose elements are the square root of the natural weights. The
operator G ∈ C

M×oN is the so-called gridding matrix, interpolating
the RI measurements from the discrete Fourier components of the
sky x that are lying on a regular grid. Its rows are convolutional ker-
nels, each centred at the corresponding spatial frequency u�∈{1,...,M}.
F ∈ C

oN×oN is the Fourier matrix. Z is a zero-padding operator in
the image space, allowing for a fine Fourier grid, thus a more ac-
curate interpolation. S ∈ R

N×N is correcting for the convolution in
the Fourier domain through G. Note that, for the data investigated
herein, the probed field of view is narrow (i.e. ‖l‖2 � 1). Thus, the
w-modulation reduces to a flat function c(w, l) = 1, ∀l . In general,
it can be efficiently incorporated in the operator G as measurement-
dependent convolutional kernels (Dabbech et al. 2017).

2.2 Sparse image reconstruction approach

Due to the incompleteness of the Fourier sampling and the presence
of the noise, the problem of recovering the image of the sky x
from the noisy measurements y is ill-posed. In order to reconstruct
a reliable approximation, prior knowledge on the unknown sky
is crucial and has to be considered in the imaging problem. In
particular, the sparsity of the signal in adequate data representation
spaces has been extensively adopted for RI imaging in the recent
years (e.g. Wiaux et al. 2009b; Li, Cornwell & de Hoog 2011;
Carrillo, McEwen & Wiaux 2012; Dabbech, Mary & Ferrari 2012;
Dabbech et al. 2015; Garsden et al. 2015). Sparse regularizations
are backed by the theory of compressive sensing (Candès 2006).
The theory proves that an exact recovery of the unknown signal can
be achieved from noisy and incomplete measurements provided that
the sensing basis � is incoherent with the sparsity basis � of the
signal. Moreover, these regularizations can be easily enforced via
convex functions. The resulting imaging problem can be efficiently
solved using convex optimization.

In the present work, we adopt the following minimization prob-
lem, named the SARA approach, solving the inverse problem set in
(2) and originally proposed in Carrillo et al. (2012)

min
x

‖ W�†x ‖1 s.t.

{‖ y − �x ‖2≤ ε,

x ≥ 0,
(3)

where ε is the �2 norm of the noise and constitutes the bound on the
data fidelity term. Sparsity of the unknown signal x is promoted by
analysis, i.e. its projection in a redundant data representation space
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is sparse. The adopted sparsity basis � = [�1, . . . ,�b] is a col-
lection of nine orthogonal bases: the Dirac basis and the eight first
Daubechies wavelet bases. The most intuitive measure of sparsity
is the �0 norm. However, being non-convex and yielding NP-hard
problems, it is often replaced by its convex relaxation the �1 norm.
In SARA, a re-weighted �1 norm is adopted, where the weighting
matrix is W = [W1, . . . , Wb], ∀i ∈ {1, . . . , b}, Wi ∈ R

N×N
+ being

diagonal matrices. Solving a sequence of re-weighted �1 minimiza-
tion problems leads to nearly strictly sparse signals (Candès, Wakin
& Boyd 2008). The SARA approach has been shown to provide
superior imaging quality to CLEAN-based approaches both on sim-
ulations and few real data sets (Carrillo et al. 2014; Onose et al.
2016, 2017; Pratley et al. 2017).

Data fidelity can be enforced in a distributed manner by splitting
the data and the measurement operator into d blocks as described
in Carrillo et al. (2014), Onose et al. (2016), Onose et al. (2017). In
this setting, the minimization task (3) equivalently reads

min
x

‖ W�†x ‖1 s.t.

{‖ yj − �j x ‖2≤ εj , ∀j ∈ {1, . . . , d},
x ≥ 0,

(4)

where for each j ∈ {1, . . . , d}, �j = �j Gj FZS is the measure-
ment operator associated with the data block yj ∈ C

Mj . εj is the �2

norm of the noise nj ∈ C
Mj and consequently the �2 bound on the

data block fidelity constraint. Note that the constraint formulation
of the minimization problem (4) (and its equivalent formulation
(3)) assumes accurate knowledge of the noise. This is challeng-
ing in real applications, in particular in the presence of significant
calibration errors. These imply that the models of the operators
�j , j ∈ {1, . . . , d}, are approximate. The �2 bounds {εj} j ∈ {1, . . . , d}
will therefore have to account not only for the thermal noise but
also the calibration errors.

Different algorithmic structures based on convex optimization
have been adopted to address the minimization problem (4). These
solvers fit within the proximal splitting methods (see Combettes
& Pesquet 2011, for a review). In this framework, a minimization
task is solved iteratively with each function handled individually.
Typically, the differentiable functions are minimized using their gra-
dient and the non-smooth functions are solved via their proximity
operators. Carrillo et al. (2014) adopted the SDMM. The algorithm
involves matrix inversions on the updates of the estimates of the
solution. This results in a computational bottleneck when recov-
ering large-sized images, despite the separability of the different
functions involved in the minimization task. Onose et al. (2016)
proposed two algorithmic structures showing high scalability to big
data. These are a sub-iterative variant of the Alternating Direc-
tion Method of Multipliers (ADMM) and the PD algorithm using
forward–backward iterations. On the one hand, the ADMM-based
algorithmic structure presents a partial splitting of the functions in-
volved. On the other hand, PD allows for a full splitting of all the
operators and functions. Furthermore, at each iteration, randomized
updates on the different variables involved are allowed. The compu-
tational load per iteration is therefore reduced. The algorithm is also
shipped with a preconditioning functionality bringing accelerated
convergence (Onose et al. 2017), hence the greater scalability of PD
to big data.

2.3 The PD algorithmic structure

In the PD algorithm, the following primal problem is solved

min
x

f (x) + γ

b∑
i=1

l(Wi�
†
i x) +

d∑
j=1

hj (�j x), (5)

together with its dual formulation

min
ui
vj

f ∗

⎛
⎝−

b∑
i=1

� iWi ui −
d∑

j=1

�
†
j vj

⎞
⎠ + 1

γ

b∑
i=1

l∗(ui)

+
d∑

j=1

h∗
j (vj ). (6)

The parameter γ is free and only affects the convergence speed,
x is the primal variable that is the unknown image of the sky, and
ui∈{1,..,b}, vj∈{1,..,d} are the dual variables associated with the spar-
sity priors and the data fidelity terms, respectively. The notation
(∗) stands for the Legendre-Fenchel conjugate function. Note that,
in the formulation (5), further splitting of the sparsity prior with
respect to each sparsity basis is achieved thanks to the separability
of the �1 norm. Moreover, the constraints are reformulated using the
indicator function.2 The functions involved are f = ι

R
N+ , enforcing

the positivity and the reality of the unknown signal, l = ‖.‖1, impos-
ing sparsity by analysis of the signal in the basis � i , ∀i ∈ {1, . . . ,
b} and hj = ιBj

, where Bj = {z ∈ C
Mj : ‖z − yj‖2 ≤ εj }, are the

data fidelity terms, enforcing the residual data blocks to be within
the �2 balls Bj , ∀j ∈ {1, . . . , d}. The formulated problem (5) is
analogous to the problem (4).

The different functions involved in (5) and (6) are non-
differentiable; therefore, they are minimized via their proximity
operators. Considering a lower semicontinuous and proper convex
function g, its proximal operator is defined as

(∀z), proxg(z)
�= argmin

z̄
g( z̄) + 1

2
‖z − z̄‖2

2. (8)

Following this definition, the function f is minimized via projec-
tions on the positive and real orthant, the sparsity function l is min-
imized via soft-thresholding operators, and the data fidelity terms
hj are minimized via projections on to the �2 balls Bj , simultane-
ously. The proximal operators of the conjugate functions involved in
problem (6) are obtained from those of problem (5) by the Moreau
decomposition, as follows:

(∀z), proxg∗ (z)
�= z − proxg(z). (9)

The two minimization tasks (5) and (6) are solved via forward–
backward steps updating the dual and the primal variables (Pesquet
& Repetti 2015). These consist in a gradient descent step coupled
with a proximal update. In analogy with CLEAN (e.g. Cotton–Schwab
CLEAN; Schwab & Cotton 1983), the algorithm can be understood as
being composed of complex CLEAN-like steps performed in parallel
in data, prior and image spaces (the reader is directed to Onose et al.
2016, for further details).

2.4 The PPD algorithmic structure

Onose et al. (2017) have recently proposed the algorithmic structure
PPD, where an acceleration strategy within the PD algorithm is
adopted. It consists of incorporating a priori knowledge on the data
when enforcing fidelity to the naturally weighted data. This is made
feasible thanks to the generalized definition of the proximal operator

2 Considering a convex set C, its indicator function is defined as

(∀z), ιC(z)
�=

{
0 z ∈ C
+∞ z /∈ C.

(7)
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Algorithm 1 Adaptive preconditioned forward–backward PD.

1: given x(0), x̄(0), u(0)
i , v

(0)
j , Wi , Uj , ε

(0)
j , κ, τ, η, ζ, γ , P , p

(0)
j , σ (0)

2: repeatfor t = 1, . . .

3: run simultaneously
4: ∀j ∈ {1, . . . , d} do in parallel

5: v
(t)
j = U

1/2
j

(
I − PE(t−1)

j

)(
U

−1/2
j v

(t−1)
j

+ Uj
−1/2�j x̄(t−1)

)
6: μ

(t)
j = ‖ yj − �j x(t−1)‖2

7: if σ (t−1) < γ1 and t − p
(t−1)
j ≥ P and

|μ(t)
j −ε

(t−1)
j |

ε
(t−1)
j

> γ2

8: ε
(t)
j = γ3μ

(t)
j + (1 − γ3)ε(t−1)

j

9: p
(t)
j = t

10: else set ε
(t)
j = ε

(t−1)
j and p

(t)
j = p

(t−1)
j

11: end
12: ∀i ∈ {1, . . . , b} do in parallel

13: u
(t)
i =

(
I − Sκ‖�W‖S

)(
u(t−1)

i + W†
i �

†
i x̄(t−1)

)
14: end
15: end

16: x(t) = P
R

N+

⎛
⎝x(t−1) − τ

(
η

d∑
j=1

�
†
j v

(t)
j +ζ

b∑
i=1

� i W i u
(t)
i

)⎞⎠
17: x̄(t) = 2x(t) − x(t−1)

18: σ (t) = ‖x(t−1) − x(t)‖2

‖x(t)‖2
19: until convergence
20: output x(t), x̄(t), u(t)

i , v
(t)
j

which, considering a strongly positive self-adjoint linear operator
U, reads

(∀z), proxU
g (z)

�= argmin
z̄

g( z̄) + 1

2
(z − z̄)†U(z − z̄). (10)

Following this definition, for each data block indexed by
j ∈ {1, . . . , d}, the �2 projections are performed on skewed balls.
Conceptually, these are equivalent to projections on to the ellip-

soids Ej , defined by Ej = {s̄ ∈ C
Mj : ‖U

− 1
2

j s̄ − yj‖2 ≤ εj }, which

are then moved to the �2 balls Bj via the linear operator U
−1/2
j (see

Onose et al. 2017, for further details). In this setting, the operator
U incorporates the prior information on the data and acts as a pre-
conditioning matrix affecting only the speed of convergence while
enforcing the data fidelity with respect to the naturally weighted
data. A relevant choice of the preconditioning matrix U to ensure
a faster convergence involves the uniform weights (Onose et al.
2017). More precisely, the matrix U ∈ R

M×M
+ is set as a diagonal

matrix, whose elements are inversely proportional to the density of
the sampling at the vicinity of the probed Fourier modes. The more
non-uniform the original density of the sampling over the Fourier
plane, the more effective the approach.

The PPD algorithmic structure is given in Algorithm 1. Note that
steps are specific to adaptive PPD, proposed in the following section.
All the dual variables involved in the problem (6) are updated in
parallel via forward–backward steps. The dual variables associated
with the data terms vj∈{1,..,d} are updated in Step 5, where projections
on the ellipsoids Ej are performed and the dual variables associated
with the sparsity prior ui∈{1,..,b} are updated via soft-thresholding
operations controlled by the parameter κ in Step 13. These dual
variables are then utilized in Step 17, as incremental variables in
the update of the primal variable x, i.e. the image of interest. The
latter is followed with a projection on to the real positive orthant.

Algorithm 2 Re-weighting scheme.

1: given x(0), x̄(0), u(0)
i , v

(0)
j , W

(0)
i

2: repeatfor k = 1, . . .

3:
[

x(k), x̄(k), u(k)
i , v

(k)
j

]
= Algorithm 1 (· · ·)

4: ∀i ∈ {1, . . . , d}, update W
(k)
i

5: until convergence
6: output x(k)

2.5 Re-weighted �1 minimization

In order to achieve sparsity by analysis of the solution in the �0

sense, consecutive re-weighted �1 problems set in (4) are solved in
the SARA approach proposed in Carrillo et al. (2012, 2013). We
concisely re-explain the re-weighting procedure here for the sake
of completeness. In this context, at each iteration indexed by k, a
re-weighted �1 minimization problem associated with the weight-
ing matrix W

(k−1) is solved using the PPD algorithmic structure
described in Algorithm 1. The primal and dual variables involved
in PPD are initialized from the solutions of the previous weighted
�1 minimization task. Once PPD converges, the weighting matrix
W

(k) = [W(k)
1 , . . . , W

(k)
b ] is updated from the previous estimate of

the primal variable x(k−1) as follows:

De

(
W

(k)
i

)
= ωk

ωk + α
(k)
i

(∣∣∣�†
i x(k−1)

∣∣∣)
e

, (11)

with the operator De denoting the diagonal element e. The pa-
rameter ω is set such that 0 < ω < 1, ensuring the decrease of
the weights and α

(k)
i is basis-dependent and is given by α

(k)
i =

1/ maxe(|�†
i x(k−1)|)e, resulting in scale-free weights. Consequently,

the weights are in the interval [ ωk

2 1] that tends to [0 1] asymptot-
ically. Note that, for each i ∈ {1, . . . , b}, the initial weighting
matrix W

(0)
i is the identity matrix. Given this definition, at each re-

weighting step, the weights are decreased in such a way that signifi-
cant analysis coefficients–corresponding to true signal−are strongly
down-weighted. After several re-weights, their associated weights
tend to zero. By doing so, only small-valued analysis coefficients–
typically corresponding to noise–remain highly penalized by the �1

norm (i.e. their associated weights are close to 1). This weighting
scheme is in line with the proposed scheme in Carrillo et al. (2012).
The iterative procedure, shown in Algorithm 2, stops when the rela-
tive variation between two consecutive estimates is within a bound
� where 0 < � < 1 or the maximum number of iterations is reached.

3 A DA PTI VE PPD FOR R EAL IMAGI NG

Highly sensitive RI data from the new-generation arrays present
prominent errors induced by the standard self-calibration, that is an
iterative loop alternating between DIE calibration steps and CLEAN

imaging steps. DIE modelling errors and lack of DDE calibration
yield sky-dependent and correlated errors in the calibrated data.
The effect of these errors is reflected in a limited dynamic range of
the final recovered radio image. Joint DDE calibration and imag-
ing as proposed in Repetti et al. (2017) would alleviate this effect
drastically. However, this is out of the scope of the present article.
Herein, the aim is imaging Cyg A from data calibrated with the stan-
dard RI pipelines. In this context, we assume that calibration errors
share a common scale for each data snapshot, i.e. data aggregated
over a short time interval. The blocks in (4) are therefore defined
per snapshot and the associated �2 bounds {εj}j ∈ {1, . . . , d} will be set
to account not only for the thermal noise but also for the mismod-
elling of � induced by calibration errors. The level of calibration
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errors per data block being a priori unknown, the bounds have to
be estimated during image reconstruction. Note that when calibra-
tion errors are imperceptible (i.e. buried in the thermal noise) the
bounds on the data fidelity terms are fixed with respect to the statis-
tics of the thermal noise (Carrillo et al. 2012; Onose et al. 2016).

With the aim of posing the minimization problem (4) with the
most appropriate �2 constraints, we propose a strategy to adjust
adaptively the �2 bounds on the data fidelity terms during the it-
erations of the PPD algorithm. The adaptive procedure described
below is incorporated in PPD through Steps 6–10 of Algorithm
1 (see modifications coloured in red). Technically, the original �2

bounds {εj}j ∈ {1, . . . , d} become iteration-dependent {ε(t)
j }j∈{1,...,d},

t being the iteration’s index. At each iteration, ε
(t)
j is updated as

a weighted mean of the current �2 bound ε
(t−1)
j and the �2 norm

of the associated residual data μ
(t)
j = ‖ yj − �j x(t−1)‖2 (Step 8 in

Algorithm 1). These updates are performed when the following
conditions are met. (i) The estimate of the sky saturates, i.e. the
relative variation between two consecutive estimates σ (t − 1) (cal-
culated in Step 18) is below a fixed value γ 1. (ii) A minimum
number of iterations is performed between two consecutive up-
dates of the �2 bound. (iii) The relative difference between the
current estimate of the �2 bound ε

(t−1)
j and the �2 norm of the cor-

responding residual data μ
(t)
j is above a certain bound γ 2, where

0 < γ 2 < 1. If the data block does not satisfy its �2 constraint
defined by ε

(t−1)
j , the latter is assumed underestimated and is in-

creased. Otherwise, it is considered overestimated and is therefore
decreased. These conditions are checked at each iteration indepen-
dently for all the data blocks. Conceptually, the update of the �2

constraints redefines the minimization problem posed in (4). In this
context, conditions (i) and (ii) are set to avoid the early modification
of the posed minimization problem, thus ensuring the stability of the
strategy.

To initialize the bounds, we perform imaging with the Non-
Negative Least Squares (NNLS) algorithm. For each data block
indexed by j ∈ {1, . . . , d}, we first compute x̃NNLS

j that is given by

x̃NNLS
j = argmin

x
‖ yj − �j x ‖2

2, s.t. x ≥ 0. (12)

We then set the �2 bound ε
(0)
j to μNNLS

j = ‖ yj − �j x̃NNLS
j ‖2. Since

only positivity is imposed, the NNLS minimization problem is
under-regularized and the model image tends to over-fit the noisy
data. As a consequence, the bounds {ε(0)

j }j∈{1,...,d} tend to be highly
under-estimated. Given this initialization, in adaptive PPD, the
bounds are adaptively increased while enforcing sparsity. The satu-
ration of the estimate of the solution and consequently the estimates
of the bounds are highly correlated with the soft-thresholding pa-
rameter κ , inducing sparsity (see Step 13 of Algorithm 1). In fact,
when κ is chosen too small, the estimate of the solution converges
rapidly in �2 balls whose bounds are very close to {μNNLS

j }j∈{1,...,d}.
In this case, the solution is under-regularized and noisy. Whereas,
when κ is chosen too high, the estimate of the solution converges
in �2 balls whose bounds are significantly higher than the noise
level. In this case, the solution is over-regularized and too sparse.
In Onose et al. (2016), the scale-free parameter κ is advised to be
set within the interval limited by 10−5 and 10−3 that is also in line
with Carrillo et al. (2014). Though this range remains relevant for
adaptive PPD, the algorithm is more sensitive to the choice of the
soft-thresholding parameter due to the estimation of the �2 bounds.
For the data imaged herein, a value of order 10−5 is found to yield
good results.

As detailed above, the resulting algorithmic structure, dubbed
adaptive PPD, is very similar to PPD except for its additional feature,
which is the �2 bounds adjustments. An overview of the variables
and parameters associated with the adaptive procedure is provided
in Appendix A. Formally, PPD is solving the minimization problem
set in (4) with well-defined �2 constraints, whereas adaptive PPD
is solving consecutive minimization tasks each corresponding to a
different set of �2 bounds. In fact, if the conditions (i), (ii) and (iii)
are met for at least one data block, the adjustment of its associated
�2 bound is performed, hence a new minimization problem is posed
and solved, with all variables involved initialized from the last
estimates of the previous minimization task. The adaptive PPD
algorithm converges when the estimate of the sky saturates and all
the �2 constraints are satisfied. In this case, the weighting matrix
involved in the sparsity prior is updated and a new iteration in
Algorithm 2 is performed, where a re-weighted �1 minimization
task is solved with adaptive PPD given the current estimates of the
�2 bounds.

4 C Y G A IM AG I N G W I T H A DA P T I V E P P D

VLA data sets investigated herein consist of aggregated data ac-
quired with the four configurations of the instrument. The resulting
Fourier sampling of the combined data is highly non-uniform. In
this case, the preconditioning strategy in the adaptive PPD algorithm
is highly effective. Furthermore, since the observations were taken
on four different days over a span of over 1 yr, the noise statis-
tics and calibration errors are not consistent over the whole data
set. Consequently, assigning different bounds on the data blocks
in comparison with assigning one global bound on all the data is
crucial. In this section, we present the maps of Cyg A at two fre-
quencies imaged with adaptive PPD. We show the efficiency of the
proposed algorithmic structure in recovering superior representa-
tions of the radio sky in comparison with the conventional approach
MS-CLEAN (Cornwell 2008).

4.1 VLA observations

The data under scrutiny are part of wide-band VLA observations of
the well-studied radio galaxy Cyg A within the frequency range of
2–18 GHz, performed over 2 yr (2015–2016). The data sets cor-
respond to observations at X band (8–12 GHz) centred at the
frequency 8.422 GHz and C band (4–8 GHz) centred at the fre-
quency 6.678 GHz, each over a spectral window of 128 MHz and
with a spectral resolution of 2 MHz. The phase centre is given
by RA = 19h 59m 28.s356 (J2000) and Dec. = +40◦ 44′ 2.′′07. All
four configurations (A, B, C, and D) of the VLA have been em-
ployed. Their respective total integration times associated with the
two data sets are displayed in Table 1. In both observations, the
initial time averaging is of 2 s. Decimation of the data sizes is per-
formed via time and frequency averaging over 10 s and 8 MHz.
The data sets processed herein are of sizes 2 × 106 and 1.3 × 106

for X band and C band, respectively. They have been carefully

Table 1. Total integration times for the data sets at the two frequencies.

Array configuration A B C D

8.42 GHz 11.38 h 3 h 1.63 h 0.80 h
6.67 GHz 6.11 h 2.01 h 1.63 h 0.58 h
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calibrated using well-established techniques in AIPS, consisting of
iterative self-calibration alternating between DIE calibration steps
and Cotton–Schwab CLEAN imaging steps (Schwab & Cotton 1983).
No DDE calibration is performed, hence the dynamic range on the
recovered maps is constrained by the subsequent artefacts rather
than the thermal noise.

4.2 Imaging quality assessment

To assess the quality of the reconstructions, we perform visual in-
spections of the obtained images. These are the estimated model
image x̃ and the residual image r = β�†( y − �x̃), where β is a
normalization factor.3 In the context of imaging with the CLEAN-
based technique MS-CLEAN, we also consider the restored image
z = x̃ ∗ b + r , that is the estimated model image convolved with
the so-called CLEAN beam b, typically a Gaussian fitted to the PSF’s
primary lobe, and to which the residual image r is added. Convolv-
ing the estimated model image with the CLEAN beam is standard in
CLEAN imaging. The latter assumes that the sky is made of point
sources. Hence, the obtained model image consists of gridded point
sources, many of which can be–indeed, need to be–negative. This
translates in overemphasizing of the high spatial frequency con-
tent of the recovered model image. Such a model of the radio sky
is physically unreasonable. Therefore, the standard recourse is to
smooth the image. By doing so, a more physical representation of
the radio image at the resolution of the instrument is obtained. This
is not required for compressive sensing-based approaches. Thanks
to the use of both more complex and physical regularizations and
explicit data fidelity bounds (see the minimization problem 4); these
approaches have been shown to achieve accurate estimates of the
ground truth images in synthetic observations and good approxima-
tions of the true sky in early real applications (Wiaux et al. 2009a;
Wenger et al. 2010; Carrillo et al. 2012; Dabbech et al. 2015; Gars-
den et al. 2015; Onose et al. 2016; Pratley et al. 2017). Moreover,
recent studies have shown that applying a restoring beam on the
reconstructed images with this class of methods does not enhance
the fidelity to the ground truth image (Chael et al. 2016; Akiyama
et al. 2017) as opposed to CLEAN-based methods. Hence, no post-
processing convolution by a CLEAN beam or addition of the residual
image is recommended. The RI recovered image in the context
of compressive sensing-based approaches is the estimated model
image.

To quantify the performance of the imaging techniques, we
consider the dynamic range metric, which is often adopted in
RI imaging and is defined as DR = maxi zi/σr , where σr is the
standard deviation of the residual image r and z is the restored
image as defined in the context of CLEAN imaging. In the com-
putation of the DR values for adaptive PPD, the involved im-
ages are obtained as follows. For natural weighting, we com-
pute the residual image rPPD = β�†( y − �x̃PPD) and the image
zPPD = x̃PPD ∗ b + rPPD. For Briggs weighting, let ȳ = �̄ ỹ and
�̄ = �̄GFZS denote the Briggs-weighted data and their associ-
ated measurement operator, where �̄ is a diagonal matrix whose
elements are the square root of the Briggs weights. We com-
pute the residual image r̄PPD = β̄�̄

†( ȳ − �̄x̃PPD) and the image
z̄PPD = x̃PPD ∗ b̄ + r̄PPD. The kernels b and b̄ are the CLEAN beams

3 Here, we adopt the conventional normalization of the residual image in RI.
That is scaling the residual �†( y − �x̃) by β = 1/ maxi (�†�δ)i , where δ

is an image with value 1 at the phase centre and zero otherwise. By doing
so, the PSF defined as h = β�†�δ has a peak value equal to 1.

associated with natural and Briggs weighting schemes, respectively.
However, the DR metric may not reflect accurately the dynamic
range in the restored image, since by definition, it is biased by the
residual image. In fact, a residual image with a low standard de-
viation can be induced by false detections in the model image, in
particular when positivity is not imposed. This is often the case of
CLEAN-based algorithms. Therefore, we report an alternative def-
inition of the dynamic range based on the model image solely,
that we call model dynamic range MDR = maxi x̃i/x̃k , where x̃k

is the brightest pixel corresponding to an artefact in the estimated
model image.4 Such a metric is relevant for compressive sensing ap-
proaches where the estimated model images are characterized with
realistic surface brightness, in particular positive. We do not report
MDR for the MS-CLEAN model maps as these exhibit unrealistic
features, in particular prominent negative components.

Due to the absence of the ground truth image of the sky, we ex-
amine the smoothed versions of the estimated model images at the
resolution of the instrument. To compare adaptive PPD with natu-
rally weighted MS-CLEAN, we adopt the images z̃ = x̃ ∗ b. Simi-
larly, we adopt the images ¯̃z = x̃ ∗ b̄ to compare adaptive PPD with
Briggs-weighted MS-CLEAN. We assess the similarity of these
two sets of images using the following metric, defined for two sig-
nals x1 and x2 as S(x1, x2) = 20 log10(max(‖ x1 ‖2, ‖ x2 ‖2)/ ‖
x1 − x2 ‖2). We re-emphasize that smoothing the model image ob-
tained with adaptive PPD is not recommended and is performed
here only for comparison purposes with MS-CLEAN.

4.3 Imaging results

The performance of adaptive PPD is evaluated in comparison with
the standard RI imaging technique MS-CLEAN with two weighting
schemes: natural and Briggs. The latter weighting scheme consti-
tutes a compromise between uniform and natural weighting, con-
trolled by a robustness parameter. It is chosen herein over uniform
weighting, in the aim to present the optimal reconstructions with
MS-CLEAN. On a further note, adaptive PPD imaging is performed
in MATLAB and MS-CLEAN imaging is performed using the RI imag-
ing software WSCLEAN (Offringa et al. 2014).

4.3.1 X band

The imaged radio map from the data at a frequency of 8.422 GHz
is of size 4096 × 2048 pixels, with a pixel size δl = 0.04 arcsec
(in both directions). The chosen pixel size is such that δl = 1/5BX,
where BX = max

u�∈{1,...,M}
‖u�‖2 is the maximum baseline i.e. the spatial

band-limit of the observations. This corresponds to recovering the
signal up to 2.5 times the nominal resolution i.e. its recovered
spatial bandwidth is B̃X ≈ 2.5 × BX . Such a choice of the imaging
resolution is conventional in RI imaging.5 We split the data to 22
blocks of size 105 measurements on average, where each block is a
single snapshot i.e. data acquired within a time interval over which
certain errors (like pointing offsets), can be assumed constant. The
number of blocks is chosen to take advantage of the parallelized

4 The pixel position is determined through the visual inspection of the model
image as the one with the highest pixel value and not belonging to the support
of the source.
5 In order to have reasonable results with CLEAN, the PSF needs to be ade-
quately sampled. Therefore, it is common in RI imaging to set the pixel size
δl such that 1/5BX ≤ δl ≤ 1/3BX.
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structure of adaptive PPD. We perform 70 weighted �1 minimization
tasks using adaptive PPD. Each minimization task stops when the
relative variation between two successive estimates of the sky is
below 10−5. To ensure higher accuracy of the final solution, the last
minimization task stops when the relative variation between two
successive estimates of the sky is below 10−6. For MS-CLEAN, we
consider imaging with the weighting schemes: natural and Briggs
(the robustness parameter is set to r = −1). We re-emphasize that
in imaging with adaptive PPD, only natural weighting–consisting
in whitening the noise–is applied on the measurements in order to
reach the optimal sensitivity.

The recovered image of adaptive PPD is displayed in Fig. 1, to-
gether with the model and restored images of MS-CLEAN. Three
key regions in Cyg A are emphasized: these are the hotspots of the
east and west jets (second and third columns), and the inner core
of the galaxy (fourth column). When inspecting the model images
(rows 1 and 3 of the same figure), one can see that the maps of
MS-CLEAN present smooth extended structures since it employs
non-delta functions. Though the maps remain non-physical, they are
considered more reasonable when compared to the CLEAN algorithm
(Högbom 1974; Clark 1980; Schwab & Cotton 1983). Inspection of
the restored maps of MS-CLEAN (rows 2 and 4) against the model
image of adaptive PPD (fifth row) shows that the latter exhibits more
details significantly visible at the hotspots of Cyg A. The validity
of this super-resolution is investigated in Section 5.1. Furthermore,
both Briggs-weighted MS-CLEAN and adaptive PPD succeed in re-
covering a faint point source in the inner core of Cyg A, highlighted
with a green circle in Fig. 1 (right column, rows 3–5) as opposed
to naturally weighted MS-CLEAN (right column, rows 1 and 2).
Discussion of this radio source will follow in Section 5.2. Inspec-
tion of the residual images displayed in Fig. 2 indicates negative
structures at the hotspots positions in the residual image of adap-
tive PPD. These can be explained by (i) the presence of calibration
errors at those positions and (ii) employing CLEAN components in
the self-calibration stage that can lead to biased solutions. In fact,
errors in CLEAN-like approaches can be absorbed in the model image
due to non-positivity. Imaging with the PPD algorithmic structure
where positivity is enforced on the estimate of the sky can therefore
be in tension with the calibrated data. Adopting PPD in the imaging
step during the calibration phase could potentially alleviate these
artefacts.

As for the quantitative comparison of the two imaging techniques,
we report the similarity of adaptive PPD and naturally weighted MS-
CLEAN S( z̃PPD, z̃MS-CLEAN) = 32.23 dB and the similarity of adap-
tive PPD and Briggs-weighted MS-CLEAN S( ¯̃zPPD

, ¯̃zMS-CLEAN) =
32.11 dB. These values indicate the strong agreement of the re-
covered low-spatial frequency content with both algorithms, more
precisely at the Fourier modes below the spatial band-limit of
the observations. The achieved DR values with natural weight-
ing are 6.02 × 103 and 4.26 × 103 for adaptive PPD and naturally
weighted MS-CLEAN, respectively. This indicates the higher fi-
delity achieved by adaptive PPD. On the other hand, the achieved
DR values with Briggs weighting are 4.2 × 103 and 7.76 × 103

for adaptive PPD and Briggs-weighted MS-CLEAN, respectively.
Note that the latter minimizes the �2 norm of the residual image
�̄

†( ȳ − �̄x̃), while adaptive PPD minimizes the �2 norm of the
residual image �†( y − �x̃). Conceptually, both methods solve for
different imaging problems. Therefore, the higher DR achieved by
Briggs-weighted MS-CLEAN does not necessarily imply a better
performance over adaptive PPD. On a further note, for the sake of
comparison, the reported DR values of adaptive PPD are computed
using the measurement operators corresponding to the two weight-

ing schemes in WSCLEAN, more precisely, in the computation of the
residual images.

The dynamic range on the model image of adaptive PPD is
MDR = 3.49 × 104 and is saturated by the DDE modelling errors.
The higher value of MDR compared to the DR values of adaptive
PPD with both weighting schemes can be justified by two reasons.
(i) In the model image of adaptive PPD, the peak value is associated
with the central nuclei; the source is super-resolved and its flux is
concentrated in few pixels. However, in the adaptive PPD restored
images (as defined in the context of CLEAN imaging), the source’s
flux is rather distributed over larger area that is of the size of the
adopted CLEAN beam. The peak values in the restored images are in-
stead associated with the hotspots. (ii) The DR value, by definition,
may not accurately reflect the level of the noise and errors in the
restored image, consisting of the combination of the residual image
and the artefacts present in the model image.

4.3.2 C band

The imaged sky at a frequency of 6.678 GHz is of size
3276 × 1638 pixels, with the pixel size fixed to 0.05 arcsec. We
utilize the exact same field of view as in X-band imaging. The spa-
tial bandwidth of the estimated signal is B̃C = 2.5 × BC , where BC

is the maximum baseline. Data are split to 16 blocks with 8 × 104

measurements on average. We perform 60 weighted �1 minimiza-
tion tasks using adaptive PPD. Each minimization task stops when
the relative variation between two consecutive estimates of the sky
gets below 10−5, except for the last minimization task, where the
value of this stopping criterion is set to 10−6. MS-CLEAN imaging
is performed using the weighting schemes: natural and Briggs (the
robustness parameter is set to r = −1). Estimated model images
of adaptive PPD and MS-CLEAN are displayed in Fig. 3. Superi-
ority of the adaptive PPD reconstructions when compared to those
of MS-CLEAN with both weighting schemes in terms of physical
surface brightness distribution and high resolution is once again
confirmed. The associated residual images are displayed in Fig. 4,
where one can see that the adaptive PPD residual image presents the
lowest standard deviation. Furthermore, it is less structured when
compared to the residual image of naturally weighted MS-CLEAN.

The DR values with natural weighting are 8.04 × 103 and
4.18 × 103 for adaptive PPD and naturally weighted MS-CLEAN,
respectively. The DR values with Briggs weighting are 3.45 ×
103 and 2.77 × 103 for adaptive PPD and Briggs-weighted MS-
CLEAN, respectively. The MDR evaluated on the model image of
adaptive PPD is 1.09 × 104. These values indicate higher dynamic
range achieved by adaptive PPD, hence higher fidelity. In addition,
we report the similarity of the model images obtained with adaptive
PPD and MS-CLEAN when smoothed at the instrument’s resolu-
tion for the two weighting schemes. Similarity of adaptive PPD and
naturally weighted MS-CLEAN is S( z̃PPD, z̃MS-CLEAN) = 33.51 dB.
Similarity of adaptive PPD and Briggs-weighted MS-CLEAN is
S( ¯̃zPPD

, ¯̃zMS-CLEAN) = 32.27 dB. Once again, these results confirm
the high similarity of the low spatial frequency content of the re-
covered images with adaptive PPD and MS-CLEAN.

5 SU P E R - R E S O L U T I O N O F C Y G A

Both recovered images of Cyg A at bands X and C with adap-
tive PPD exhibit high-resolution features when compared to the
restored maps of MS-CLEAN. In this section, we analyse the super-
resolution achieved with adaptive PPD by referring to higher res-
olution observations of Cyg A. We also confirm the detection of a
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Figure 1. X band: recovered images at 2.5 times the resolution of the instrument. From top to bottom, estimated model and restored images of naturally
weighted MS-CLEAN (resp. rows 1 and 2), estimated model and restored images of Briggs-weighted MS-CLEAN (resp. rows 3 and 4) and model image of
adaptive PPD (fifth row). The full images are displayed in log10 scale (first column) as well as zooms on the three brightest regions: east jet’s hotspot (second
column), west jet’s hotspot (third column) and the inner core of the Cyg A galaxy (fourth column). The zoomed regions are highlighted with white boxes in
the model image of naturally weighted MS-CLEAN (top row, left column). The surface brightness of the restored image obtained with naturally weighted
MS-CLEAN (second row) is in units of Jy beam−1, the naturally weighted beam is of size 0.35 arcsec × 0.35 arcsec and its flux is 90.43 Jy. The surface
brightness of the restored image obtained with Briggs-weighted MS-CLEAN (fourth row) is also in units of Jy beam−1, the Briggs-weighted beam is of size
0.18 arcsec × 0.18 arcsec and its flux is 22.95 Jy. The surface brightness of the model images (rows 1, 3, and 5) is in units of Jy pixel−1, the pixel size being
0.04 arcsec in both directions. Note that the black dots in the hotspots recovered in the model images of MS-CLEAN correspond to important negative pixels.
Naturally, these are non-physical components for an intensity map. Therefore, astronomers utilize instead the restored maps, where the prominent negative
components disappear thanks to the blurring of the model image with the CLEAN beam.
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Figure 2. X band: residual images. From left to right: residual image of adaptive PPD with natural weighting (σr = 2.26 × 10−4), MS-CLEAN with natural
weighting (σr = 3.70 × 10−4), MS-CLEAN with Briggs weighting (σr̄ = 1.77 × 10−4). The lower value of the standard deviation of the residual image
obtained with PPD, compared to that obtained with naturally weighted MS-CLEAN confirms the higher fidelity to data of PPD’s estimated model image.

secondary black hole in the inner core of Cyg A, reported in Perley
et al. (2017), and super-resolved in the maps produced by adaptive
PPD.

5.1 Analysis of the super-resolution with adaptive PPD

To judge the veracity of the super-resolution capabilities of adap-
tive PPD, we compare its results to maps of Cyg A obtained from
higher-frequency observations, where the nominal resolution is nat-
urally higher, hence super-resolution is not required. More precisely,
we choose VLA observations at Ku band (12–18 GHz), where the
nominal resolution is two to three times that of the X and C band
data. Their associated maps are restored images obtained with the
Cotton-Schwab CLEAN (Schwab & Cotton 1983). Since the emis-
sion mechanism in Cyg A is known to be synchrotron, the radiation
spectrum is very broad, spanning over orders of magnitudes (Carilli
et al. 1991). No sharp spectral features are expected within a fre-
quency band of the same order of magnitude. Therefore, the choice
of Ku band images as a reference is relevant.

For the imaged data at X band, we utilize a restored map of
Cyg A at a frequency of 17.324 GHz as a reference. These data
present a maximum baseline B ref

1 , that is B ref
1 ≈ 2 × BX , and the

spatial bandwidth of its imaged map is B̃ ref
1 = 4 × BX . The X band

data, initially imaged at the spatial bandwidth 2.5 × BX, are further
imaged at the exact same spatial bandwidth as the reference image
B̃ ref

1 using both Briggs-weighted MS-CLEAN and adaptive PPD. In
Fig. 5, zooms on the hotspots are displayed for the reference image,
the model image of adaptive PPD and the restored image of Briggs-
weighted MS-CLEAN. All three images are characterized with a
pixel size δl = 0.025 arcsec. The surface brightness of PPD model
images are in units of Jy pixel−1 and that of MS-CLEAN and the
reference maps are in units of Jy beam−1. Note that the displayed
integrated flux is preserved on the three maps. The inspection of
the zooms on both hotspots indicates the high similarity of the
recovered hotspots in the model image of adaptive PPD and the
CLEAN restored image of Cyg A at the frequency 17.324 GHz. A
further examination of adaptive PPD’s consistency with respect
to the choice of the imaging resolution is examined through the
image recovery at three different resolutions. These correspond to
the pixel sizes δl ∈ {0.08, 0.04, 0.025 arcsec}, shown in Fig. 5
as embedded animations6 cycling through the imaged hotspots at
the different resolutions. The high-resolution features are consistent
over the different resolutions with a noticeable improvement when
increasing the imaged spatial bandwidth, in particular in terms of the
pixelization at the edges of the hotspots’ brightest structures. Thus,

6 The animation is only supported when the PDF file is opened using Adobe
Acrobat Reader, https://get.adobe.com/reader/.

super-resolved maps up to four times the nominal resolution can be
obtained with no apparent degradation of the imaging quality despite
the increase of the number of the unknowns in the imaging problem.
Note that when running MS-CLEAN on a resolution larger than the
nominal one, naturally a super-resolved model image is obtained,
where the negative components are less prominent. However, as
explained earlier, the super-resolved structures of the MS-CLEAN
model image remain non-physical. Moreover, the resolution of the
corresponding restored image is limited by the shape of the CLEAN

beam, dictated by the effective Fourier sampling. This effect is
illustrated in Fig. 5, where one can see that (i) the hotspots recovered
in the restored image of Briggs-weighted MS-CLEAN are smooth
when compared against the reconstruction of adaptive PPD, (ii) no
super-resolution is noticed when examining the hotspots at the three
different resolutions.

Similar investigation is carried out for the obtained images from
the data at C band. These are cross-checked with a restored image
of Cyg A at a frequency of 14.252 GHz. The maximum baseline
of the observations is B ref

2 ≈ 2.13 × BC and the imaged map’s spa-
tial bandwidth is B̃ ref

2 ≈ 3.5 × BC corresponding to a pixel size
δl = 0.035 arcsec. We perform imaging with adaptive PPD and
Briggs-weighted MS-CLEAN at the same spatial bandwidth B̃ ref

2

(i.e. same resolution). Zooms on the hotspots of the reference
map, the adaptive PPD model image and the Briggs-weighted MS-
CLEAN restored image are shown in Fig. 6. The surface brightness
of PPD model images are in units of Jy pixel−1 and that of MS-
CLEAN and the reference maps are in units of Jy beam−1. Once
again, when inspecting visually the hotspots, it is clear that the
obtained details with adaptive PPD are physical. Super-resolution
recovery of adaptive PPD is again confirmed. Moreover, inspect-
ing the obtained maps with adaptive PPD at the different resolu-
tions, characterized with pixel sizes δl ∈ {0.08, 0.05, 0.035 arcsec},
demonstrates the consistency of the high-resolution features of
the algorithm. These images are shown in Fig. 6 as embedded
animations cycling through the imaged hotspots at the different
resolutions.

These super-resolved maps of adaptive PPD are the result of the
SARA priors enforced on the estimate of the sky, which are the
positivity and the re-weighted average sparsity in a redundant dic-
tionary. In particular, positivity seems to have a significant impact
on the spatial frequencies above the maximum baseline of the obser-
vations. For a better understanding of this prior’s contribution, we
note that the reconstructed image of the radio sky is a sampling of a
spatially band-limited version of the true sky. Moreover, if exact, it
can be expressed as the sampled convolution of the true positive sky
with a sinc function. Thus, conceptually, it can take negative values.
Therefore, formally, the positivity constraint comes in tension with
the nature of the true samples of the spatially band-limited sky. Yet,
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Figure 3. C band: recovered images at 2.5 times the resolution of the instrument. From top to bottom, estimated model and restored images of naturally
weighted MS-CLEAN (resp. rows 1 and 2), estimated model and restored images of Briggs-weighted MS-CLEAN (resp. rows 3 and 4) and model image of
adaptive PPD (fifth row). The full images are displayed in log10 scale (first column) as well as zooms on the three brightest regions: east jet’s hotspot (second
column), west jet’s hotspot (third column), and the inner core of the Cyg A galaxy (fourth column). The zoomed regions are highlighted with white boxes
in the model image of naturally weighted MS-CLEAN (top row, left column). The surface brightness of the restored image obtained with naturally weighted
MS-CLEAN (second row) is in units of Jy beam−1, the naturally weighted beam is of size 0.45 arcsec × 0.45 arcsec and its flux is 93.65 Jy. The surface
brightness of the restored image obtained with Briggs-weighted MS-CLEAN (fourth row) is also in units of Jy beam−1, the Briggs-weighted beam is of size
0.25 arcsec × 0.25 arcsec and its flux is 30.44 Jy. The surface brightness of the model images (rows 1, 3 and 5) is in units of Jy pixel−1, the pixel size being
0.05 arcsec in both directions.
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Figure 4. C band: residual images. From left to right: images of adaptive PPD with natural weighting (σr = 3.65 × 10−4), MS-CLEAN with natural weighting
(σr = 7.01 × 10−4), MS-CLEAN with Briggs weighting (σr̄ = 4.60 × 10−4). The lower value of the standard deviation of the residual image obtained with
PPD, compared to that obtained with naturally weighted MS-CLEAN confirms the higher fidelity to data of PPD’s estimated model image.

Figure 5. X band: zooms on the hotspots in Cyg A displayed in log10 scale. Top: east hotspot, bottom: west hotspot. From left to right: the reference map at
17.324 GHz obtained with CLEAN, the estimated model image of adaptive PPD, and the restored image of Briggs-weighted MS-CLEAN from the data at X band
(8.422 GHz). All images have the same pixel size δl = 0.025 arcsec. The figure also contains embedded animation of the hotspots imaged with adaptive PPD
and Briggs-weighted MS-CLEAN at three different resolutions corresponding to δl ∈ {0.08, 0.04, 0.025 arcsec}. The surface brightness of Briggs-weighted
MS-CLEAN and the reference map are in units of Jy beam−1. The surface brightness of PPD’s model images are in units of Jy pixel−1. Note that, for each
resolution, the unit of the surface brightness is different as it is a function of the pixel. The displayed integrated flux is preserved on all the maps. One can
notice improved details with increased resolution, in particular at the edges of the brightest structures of the hotspots. The animations are only supported when
the PDF file is opened using Adobe Acrobat Reader.

this tension can be alleviated by choosing to image the radio sky at
a spatial bandwidth significantly larger than the maximum baseline
of the observations. In this case, positivity simply acts as a strong
prior for the Fourier modes beyond the maximum baseline of the

observations, i.e. for super-resolution. As shown above, super-
resolution obtained with adaptive PPD is validated. These findings
confirm that the estimated model images using convex optimization
techniques are highly reliable, thus no post-processing, such as in-
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Figure 6. C band: zooms on the hotspots in Cyg A displayed in log10 scale. Top: east hotspot, bottom: west hotspot. From left to right: the reference map
at 14.252 GHz obtained with CLEAN, the estimated model image of adaptive PPD and the restored image of Briggs-weighted MS-CLEAN from the data at C
band (6.678 GHz). All images have the same pixel size δl = 0.035 arcsec. The surface brightness of Briggs-weighted MS-CLEAN and the reference map are
in units of Jy beam−1. The surface brightness of PPD’s model images are in units of Jy pixel−1. Note that, for each resolution, the unit of the surface brightness
is different as it is a function of the pixel. The displayed integrated flux is preserved on all the maps. The figure also contains embedded animations of the
hotspots imaged with adaptive PPD and Briggs-weighted MS-CLEAN at three different resolutions, corresponding to δl ∈ {0.08, 0.05, 0.035 arcsec}. One can
notice improved details with increased resolution, in particular at the edges of the brightest structures of the hotspots. The animations are only supported when
the PDF file is opened using Adobe Acrobat Reader.

troducing a blur reflecting the instrument’s resolution, is required.
On a further note, the w-modulation, originating from the third
dimension of the baseline, has recently been shown to yield super-
resolution (Dabbech et al. 2017). Yet, this is not the case here, as the
probed field of view is narrow. The w-modulation, being negligible,
is not considered in the imaging problem.

5.2 The story of a secondary black hole (candidate)

Perley et al. (2017) report the serendipitous discovery of a luminous
radio transient in the inner core of Cyg A, just 460 pc offset from
the supermassive black hole in the galaxy. The transient, dubbed
Cyg A-2, is well detected at 8.5 GHz using CLEAN, and is interpreted
as a secondary black hole. We confirm the findings of Perley et al.
(2017) when imaging Cyg A from observations at a frequency of
8.422 GHz, at 2.5 times the nominal resolution (corresponding to
a pixel size of δl = 0.04 arcsec). In Fig. 1, fourth column, zooms

on the inner core of Cyg A are displayed. The source’s location is
highlighted with a circle whose centre is at the position given by
RA = 19h59m28.s322 (J2000) and Dec. = +40◦ 44′ 1.′′89 and radius
of size 0.1 arcsec. The source is highlighted with a green circle when
detected and a red dashed circle otherwise. One can see that Cyg
A-2 is well detected with adaptive PPD and Briggs-weighted MS-
CLEAN, whereas naturally weighted MS-CLEAN fails to do so.
Though visible, the source is blurred in the restored image of Briggs-
weighted MS-CLEAN. The flux of Cyg A-2, calculated directly
from the model images (over the highlighted physical region), is
about 5 mJy with adaptive PPD and 4.9 mJy with Briggs-weighted
MS-CLEAN. The source is also well detected when imaged at
four times the nominal resolution (corresponding to a pixel size
δl = 0.025 arcsec) as shown in Fig. 7 (left-hand panel), where its
angular scale is preserved and its estimated flux is about 4.3 mJy.

More interestingly, the source is highly resolved when im-
aged with adaptive PPD from the observations at a frequency of
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Figure 7. Cyg A-2 displayed in log10 scale. Left: X band observations
imaged with PPD at four times the nominal resolution (δl = 0.025 arcsec).
Right: C band observations imaged with PPD at 3.5 times the nominal res-
olution (δl = 0.035 arcsec). Cyg A-2 is highlighted with a green circle. The
source’s angular scales from the maps at 2.5 times the nominal resolutions
are highlighted with green dashed circles. These maps are embedded as
animations in the figure. The animations are only supported when the PDF
file is opened using Adobe Acrobat Reader.

6.678 GHz at 2.5 times the nominal resolution (corresponding to
a pixel size δl = 0.05 arcsec), as shown in Fig. 3 (fourth col-
umn). The source’s location is highlighted with a circle whose
centre is at the position given by RA = 19h 59m 28.s324 (J2000) and
Dec. = +40◦ 44′ 1.′′88 and radius of size 0.11 arcsec. The source
is highlighted with a green circle when detected and a red dashed
circle otherwise. Although detected in the model image of MS-
CLEAN with Briggs weighting at a single pixel, in the restored
image, the source is completely buried within the beam of the pri-
mary nuclei of Cyg A (see Fig. 3, fourth column, fourth row). As
for MS-CLEAN with natural weighting, here again it fails com-
pletely to detect the radio transient. The estimated flux of Cyg A-2
is about 4.6 mJy with both adaptive PPD and Briggs-weighted MS-
CLEAN (over the highlighted physical region). These results are in
agreement with the findings of Perley et al. (2017). The source is
also well detected when imaged at 3.5 times the nominal resolution
(corresponding to a pixel size δl = 0.035 arcsec) as shown in Fig. 7
(right-hand panel), where it is further resolved and its estimated flux
is about 3.4 mJy. We note the presence of a tail-like structure associ-
ated with Cyg A-2 in the PPD image. However, given the faintness
of the structure, and the fact that it is not detected in the X-band
image, we cannot confidently say whether this faint structure is real,
or is a DDE-induced imaging artefact.

6 C O N C L U S I O N S

In this paper, we developed an adaptive version of the convex PPD
algorithmic structure solving the SARA minimization problem for
RI imaging in the presence of unknown noise and calibration er-
rors. The algorithm achieves high-resolution high-fidelity imag-
ing of Cyg A from VLA observations. Imaging results confirm
the superior quality of the proposed algorithmic structure to stan-
dard CLEAN-based techniques. The veracity of the achieved super-
resolved reconstructions of Cyg A at X and C bands is verified
through higher resolution VLA observations of the radio galaxy at
Ku band. These results confirm the reliability of the reconstructed
images with the advanced convex optimization algorithms as accu-
rate representations of the radio sky. Our MATLAB code is available
online on GitHub, https://github.com/basp-group/Puri-Psi/. Inter-
estingly, the recent discovery of a radio transient in the inner core

of Cyg A, revealed at X band, is further confirmed at C band when
imaging with adaptive PPD, though the latter observations are char-
acterized with a lower nominal resolution. The radio source is very
well detected on the adaptive PPD model images at both frequencies
and is super-resolved when compared against the restored images
obtained with MS-CLEAN.
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A P P E N D I X A : OV E RV I E W O F TH E
PARAMETERS SPECIFIC TO A DA PTIVE PPD

An overview of the variables and parameters involved in the ad-
justment of the �2 bounds on the data fidelity terms is presented in
Tables A1 and A2, respectively.

Table A1. Overview of the variables employed in the adaptive procedure
incorporated in Algorithm 1.

μ
(t)
j �2 norm of the residual corresponding to the data block j at

iteration t.
ε

(t−1)
j �2 bound on the data block j imposed at iteration t.

p
(t−1)
j Iteration index of the previous update of the �2 bound of the

data block j.
σ (t − 1) Characterizing the relative variation between two

consecutive estimates of the solution at iteration t − 1.

Table A2. Overview of the parameters involved in the adaptive procedure
incorporated in Algorithm 1.

γ 1 ∈ ]01[ Configurable; the bound on the relative variation between
two consecutive estimates of the solution. For the tests
herein γ 1 is set to 10−4.

γ 2 ∈ ]01[ Configurable; the tolerance on the relative difference
between the current estimate of the bound imposed on the
data block j and the �2 norm of its associated residual. For
the tests herein γ 2 is set to 10−3.

γ 3 ∈ ]01[ Configurable; characterizing the increment of the �2 bound
with respect to the �2 norm of the current residual. For the
tests herein γ 3 is set to 0.618.

P Configurable; corresponds to the minimum number of
iterations between consecutive updates on each �2 bound.
For the tests herein P is set to 100.
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