373 research outputs found
Black carbon semi-direct effects on cloud cover: review and synthesis
Absorbing aerosols (AAs) such as black carbon (BC) or dust absorb incoming solar radiation, perturb the temperature structure of the atmosphere, and influence cloud cover. Previous studies have described conditions under which AAs either increase or decrease cloud cover. The effect depends on several factors, including the altitude of the AA relative to the cloud and the cloud type. We attempt to categorize the effects into several likely regimes. Cloud cover is decreased if the AAs are embedded in the cloud layer. AAs below cloud may enhance convection and cloud cover. AAs above cloud top stabilize the underlying layer and tend to enhance stratocumulus clouds but may reduce cumulus clouds. AAs can also promote cloud cover in convergent regions as they enhance deep convection and low level convergence as it draws in moisture from ocean to land regions. Most global model studies indicate a regional variation in the cloud response but generally increased cloud cover over oceans and some land regions, with net increased low-level and/or reduced upper level cloud cover. The result is a net negative semi-direct effect feedback from the cloud response to AAs. In some of these climate model studies, the cooling effect of BC due to cloud changes is strong enough to essentially cancel the warming direct effects
Climates of Warm Earth-like Planets I: 3-D Model Simulations
We present a large ensemble of simulations of an Earth-like world with
increasing insolation and rotation rate. Unlike previous work utilizing
idealized aquaplanet configurations we focus our simulations on modern
Earth-like topography. The orbital period is the same as modern Earth, but with
zero obliquity and eccentricity. The atmosphere is 1 bar N-dominated with
CO=400 ppmv and CH=1 ppmv. The simulations include two types of
oceans; one without ocean heat transport (OHT) between grid cells as has been
commonly used in the exoplanet literature, while the other is a fully coupled
dynamic bathtub type ocean. The dynamical regime transitions that occur as day
length increases induce climate feedbacks producing cooler temperatures, first
via the reduction of water vapor with increasing rotation period despite
decreasing shortwave cooling by clouds, and then via decreasing water vapor and
increasing shortwave cloud cooling, except at the highest insolations.
Simulations without OHT are more sensitive to insolation changes for fast
rotations while slower rotations are relatively insensitive to ocean choice.
OHT runs with faster rotations tend to be similar with gyres transporting heat
poleward making them warmer than those without OHT. For slower rotations OHT is
directed equator-ward and no high latitude gyres are apparent. Uncertainties in
cloud parameterization preclude a precise determination of habitability but do
not affect robust aspects of exoplanet climate sensitivity. This is the first
paper in a series that will investigate aspects of habitability in the
simulations presented herein. The datasets from this study are opensource and
publicly available.Comment: 27 pages ApJS accepted. Expanded Introduction and several additional
figure
Depth-dependent critical behavior in V2H
Using X-ray diffuse scattering, we investigate the critical behavior of an
order-disorder phase transition in a defective "skin-layer" of V2H. In the
skin-layer, there exist walls of dislocation lines oriented normal to the
surface. The density of dislocation lines within a wall decreases continuously
with depth. We find that, because of this inhomogeneous distribution of
defects, the transition effectively occurs at a depth-dependent local critical
temperature. A depth-dependent scaling law is proposed to describe the
corresponding critical ordering behavior.Comment: 5 pages, 4 figure
Depth-dependent ordering, two-length-scale phenomena and crossover behavior in a crystal featuring a skin-layer with defects
Structural defects in a crystal are responsible for the "two length-scale"
behavior, in which a sharp central peak is superimposed over a broad peak in
critical diffuse X-ray scattering. We have previously measured the scaling
behavior of the central peak by scattering from a near-surface region of a V2H
crystal, which has a first-order transition in the bulk. As the temperature is
lowered toward the critical temperature, a crossover in critical behavior is
seen, with the temperature range nearest to the critical point being
characterized by mean field exponents. Near the transition, a small two-phase
coexistence region is observed. The values of transition and crossover
temperatures decay with depth. An explanation of these experimental results is
here proposed by means of a theory in which edge dislocations in the
near-surface region occur in walls oriented in the two directions normal to the
surface. The strain caused by the dislocation lines causes the ordering in the
crystal to occur as growth of roughly cylindrically shaped regions. After the
regions have reached a certain size, the crossover in the critical behavior
occurs, and mean field behavior prevails. At a still lower temperature, the
rest of the material between the cylindrical regions orders via a weak
first-order transition.Comment: 12 pages, 8 figure
Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere
Radiative forcing due to changes in ozone is expected for the 21st century. An assessment on changes in the tropospheric oxidative state through a model intercomparison ("OxComp'') was conducted for the IPCC Third Assessment Report (IPCC-TAR). OxComp estimated tropospheric changes in ozone and other oxidants during the 21st century based on the "SRES'' A2p emission scenario. In this study we analyze the results of 11 chemical transport models (CTMs) that participated in OxComp and use them as input for detailed radiative forcing calculations. We also address future ozone recovery in the lower stratosphere and its impact on radiative forcing by applying two models that calculate both tropospheric and stratospheric changes. The results of OxComp suggest an increase in global-mean tropospheric ozone between 11.4 and 20.5 DU for the 21st century, representing the model uncertainty range for the A2p scenario. As the A2p scenario constitutes the worst case proposed in IPCC-TAR we consider these results as an upper estimate. The radiative transfer model yields a positive radiative forcing ranging from 0.40 to 0.78 W m(-2) on a global and annual average. The lower stratosphere contributes an additional 7.5-9.3 DU to the calculated increase in the ozone column, increasing radiative forcing by 0.15-0.17 W m(-2). The modeled radiative forcing depends on the height distribution and geographical pattern of predicted ozone changes and shows a distinct seasonal variation. Despite the large variations between the 11 participating models, the calculated range for normalized radiative forcing is within 25%, indicating the ability to scale radiative forcing to global-mean ozone column change
Strong Temporal Variation Over One Saturnian Year: From Voyager to Cassini
Here we report the combined spacecraft observations of Saturn acquired over one Saturnian year (~29.5 Earth years), from the Voyager encounters (1980–81) to the new Cassini reconnaissance (2009–10). The combined observations reveal a strong temporal increase of tropic temperature (~10 Kelvins) around the tropopause of Saturn (i.e., 50 mbar), which is stronger than the seasonal variability (~a few Kelvins). We also provide the first estimate of the zonal winds at 750 mbar, which is close to the zonal winds at 2000 mbar. The quasi-consistency of zonal winds between these two levels provides observational support to a numerical suggestion inferring that the zonal winds at pressures greater than 500 mbar do not vary significantly with depth. Furthermore, the temporal variation of zonal winds decreases its magnitude with depth, implying that the relatively deep zonal winds are stable with time
Significance Tests for Periodogram Peaks
We discuss methods currently in use for determining the significance of peaks
in the periodograms of time series. We discuss some general methods for
constructing significance tests, false alarm probability functions, and the
role played in these by independent random variables and by empirical and
theoretical cumulative distribution functions. We also discuss the concept of
"independent frequencies" in periodogram analysis. We propose a practical
method for estimating the significance of periodogram peaks, applicable to all
time series irrespective of the spacing of the data. This method, based on
Monte Carlo simulations, produces significance tests that are tailor-made for
any given astronomical time series.Comment: 22 pages, 11 Encapsulated Postscript figures, AAS LaTeX v5.2
Submitted to Ap
- …
