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Structural defects in a crystal are responsible for the “two length-scale” behavior, in which a
sharp central peak is superimposed over a broad peak in critical diffuse X-ray scattering. We have
previously measured the scaling behavior of the central peak by scattering from a near-surface region
of a V2H crystal, which has a first-order transition in the bulk. As the temperature is lowered toward
the critical temperature, a crossover in critical behavior is seen, with the temperature range nearest
to the critical point being characterized by mean field exponents. Near the transition, a small two-
phase coexistence region is observed. The values of transition and crossover temperatures decay
with depth. An explanation of these experimental results is here proposed by means of a theory
in which edge dislocations in the near-surface region occur in walls oriented in the two directions
normal to the surface. The strain caused by the dislocation lines causes the ordering in the crystal
to occur as growth of roughly cylindrically shaped regions. After the regions have reached a certain
size, the crossover in the critical behavior occurs, and mean field behavior prevails. At a still lower
temperature, the rest of the material between the cylindrical regions orders via a weak first-order
transition.

PACS numbers: 05.70.Fh, 61.72.Bb, 61.72.Lk, 61.05.cf

I. INTRODUCTION

Since defects exist in any real system, the understand-
ing of their influence on ordering and structural phase
transitions is important. A signature of the presence
of defects in a crystal near a phase transition is the so-
called “two length-scale” behavior, in which, in the criti-
cal diffuse scattering (CDS) of X-rays or neutrons, a nar-
row “central peak” is found on top of a broad peak1,2.
Previous theoretical studies of this behavior have estab-
lished that one cause of this is the presence of dislocation
lines1–3. These theories argue that the strain field asso-
ciated with a dislocation line results in the growth of a
roughly cylindrical ordered region near the dislocation
line itself. Such regions order at a temperature higher
than the defect-free crystal. Accordingly, while the order
occurs in the cylindrical regions, the broad peak in the
CDS is due to thermal fluctuations in regions of the ma-
terial which are relatively unaffected by the strain field,
while the narrow central peak is due to the fluctuations
in regions where the enhanced ordering occurs.

Unaccounted for in these theories, however, is the fact
that in many real systems defects do not exist uniformly
throughout the crystal. Often defects are caused by sur-
face treatments or surface reconstructions and in this case
they accumulate near the surface and their density decays

with depth. When this happens, the ordering proper-
ties and two length-scale behavior depend on depth as
well. Indeed, with high resolution X-ray diffraction mea-
surements, we have previously found that V2H has two
length-scale and associated behavior that is depth depen-
dent4,5. These measurements were performed in both re-
flection and transmission geometries, allowing us to com-
pare the behavior of the crystal at different depths. In
this paper, we propose a theoretical explanation of these
experimental results that accounts for the depth depen-
dence of the observed behavior.

Systematic studies of many materials in which two
length-scale behavior has been found6–16, including pre-
vious studies of V2H4, have concluded that the narrow
central peak of the CDS only occurs in the scattering
from a defective “skin layer”, that is a region of the ma-
terial that starts a few hundred Å below the surface and
extends several tens of µm below the surface. However,
to the best of our knowledge, the two-length-scale behav-
ior in V2H is different from that which has been observed
in any other material, because in V2H the phase transi-
tion in the bulk is a first-order transition. In the skin
layer, instead, the ordering is more complicated as found
experimentally by a number of unusual phenomena in-
cluding: (1) diffuse scattering which, as the temperature
is lowered toward a critical value, consists of a broad peak
that changes only slightly with temperature and a nar-
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Figure 1: (Color online) Schematic illustration of the arrange-
ment of dislocation lines in V2H. Edge dislocations are ar-
ranged in walls of parallel lines that extend in the directions
normal to the surface, whose density decreases with depth.
Two colors are used for clarity of presentation to distinguish
the lines extending in the two directions, but they don’t cor-
respond to any physical difference.

row central peak with an amplitude that diverges4; (2)
an effective critical temperature Tc (y) for the behavior
of the central peak that changes with the depth y be-
low the surface and extrapolates to a temperature T∞

c

that always exceeds the bulk transition temperature T0
5;

(3) a crossover in the universal critical behavior shown
by the central peak from three-dimensional mean field
critical behavior to a different universality class as the
temperature increases from Tc (y)

4,5; (4) a narrow two-
phase region and a weak first-order transition observed
at temperatures T0 (y) slightly below the critical value17.

In order to explain these experimental findings we
present a theory which accounts for the distribution of
defects experimentally detected3: edge dislocations occur
mostly in the skin layer, accumulating near the surface;
they are arranged in arrays of parallel lines which we refer
to as “walls”; each wall consists of lines that are oriented
in either of the two directions parallel to the surface; the
walls extend into the crystal and are thus oriented in ei-
ther of the two directions perpendicular to the surface. In
fig. 1 we show a schematic of this arrangement of defects.

As with previous theories, the strain due to disloca-
tion lines enhances the ordering in their vicinity. As
the temperature is lowered toward the critical temper-
ature, ordering in the skin layer first occurs in cylindri-
cally shaped ordered regions (ORs) near the individual
dislocation lines. However, in contrast to previous theo-
ries, which assumed the ORs grow freely, in our theory
the interaction between lines constrains their collective
growth. The ordering process responsible for the forma-
tion of the ORs is continuous and this explains the change
in the order of the phase transition from first-order in the
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Figure 2: Bulk measurements of the peak height h of the
(0 5/2 5̄/2) superstructure reflection vs. ∆T = T − T0,
where T0 is the transition temperature for the bulk. The
sudden jump of a few orders of magnitude in h is a clear
indication that the transition is first-order.

bulk to continuous in the skin layer. Then, as the ORs
grow and occupy more than a certain fraction of the ma-
terial, the crossover in the universal critical behavior of
the central peak occurs. Since the density of dislocation
lines decreases with depth, the effective critical temper-
ature also varies with depth. Finally, as the temperature
is reduced further, below the effective critical tempera-
ture at any particular depth, the parts of the material in
between the network of ORs undergo a weak first-order
transition. Before presenting our theory, in the next sec-
tion we recount in some detail the unusual experimental
facts of the two length-scale phenomena and associated
behavior found in V2H.

II. EXPERIMENTAL RESULTS

As in prior works3–5,17,18, we focus on the transition
from the ordered monoclinic β1 phase to the disordered
body centered tetragonal β2 phase in which the c-axis
is along z (for the phase diagram see Ref. 19). In the
β1 phase, one half of the z-axis octahedral sites halfway
between two V atoms, namely the Oz1 sites, are mostly
occupied by hydrogen atoms, while in the β2 phase both
Oz1 and Oz2 sites are, on average, equally occupied20,21.

As first reported in Ref. 18, in transmission geometry
there is clear evidence of a first-order transition in the
bulk material (see Fig. 2). The diffuse scattering from
the skin layer can be measured at various depths in re-
flection geometry by varying beam energy and reflection
order. At temperatures above the bulk transition tem-
perature, what we find is a broad peak corresponding to
the bulk diffuse scattering, which increases slowly with
decreasing temperature, coexisting with a central peak
whose amplitude diverges at a temperature still higher
than the bulk transition one4. The CDS of the central
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Figure 3: A) Peak height h of the (0 5/2 5̄/2) superstruc-
ture reflection vs. reduced temperature t = T

Tc(y)
− 1. The

value of h is proportional to tγ , and thus shows the crossover
of the critical exponent γ from a mean-field-compatible value
of 0.93 ± 0.06 for small t to 3.3 ± 0.3 for higher t. The mea-
surements were carried out at a depth y of 13.1 µm.
B) Inverse correlation length κ vs. reduced temperature t =

T
Tc(y)

− 1, showing the crossover of the critical exponent ν

from a mean-field-compatible value of 0.49 ± 0.09 for small t
to 1.22 ± 0.09 for higher t. The measurements were carried
out at a depth y of 1.6 µm.

peak indicates that the transition is continuous in a skin
layer that has a depth of several tens of µm. Remarkably,
the temperature at which the CDS diverges depends on
the depth probed. Thus, we find a depth dependent criti-
cal temperature Tc (y), where y is the effective scattering
depth5. Furthermore, as shown in Ref. 4, there is a two-
length scale effect in the CDS from the skin layer. As
the temperature is lowered toward Tc (y), the height of
the central peak, which is proportional to the suscepti-
bility, shows a crossover in critical scaling behavior. In
fact, for temperatures close to the critical temperature,
the value of the critical exponent γ in the law χ ∝ t−γ ,
describing the divergence of the susceptibility with the
reduced temperature t = T/Tc (y) − 1, is always consis-
tent with 1; similarly, the full width at half maximum
of the central peak, which is proportional to the inverse
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Figure 4: (Color online) Intensities I of the (0 4 4̄) funda-
mental reflection in a range of temperatures of 0.6 K around
the weak first-order transition temperature T0

′ in the skin-
layer. From top to bottom, the measurements were taken at
T0

′ − 0.3 K, T0
′ − 0.1 K, T0

′ + 0.1 K and T0
′ + 0.3 K. The

dashed blue and dashed-dotted green lines show individual
gaussian peak fits, while the red lines are the convolutions
of the single peaks. At all the temperatures we see peaks at
Q = 11.276 Å−1 and Q = 11.283 Å−1 (indicated by arrows),
corresponding to the β1 and the β2 phases, respectively. The
measurements were carried out at a depth of 39 µm.
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Figure 5: (Color online) Integrated intensities I vs. absolute
value of reduced temperature t = T

Tc(y)
− 1. The integrated

intensities, proportional to |t|2β , allow us to estimate the long
range critical exponent β. The black circles correspond to
the (0 5/2 5̄/2) superstructure reflection, depth y of 25 µm;
the red squares to the (0 7/2 7̄/2) superstructure reflection,
depth y of 34 µm. The like-colored lines show the results of fits
which gave values for the critical exponent β of 0.180± 0.004
and 0.174± 0.003, respectively, obtained neglecting a narrow
(0.6 K) region of two-phase coexistence.

correlation length κ, and which scales as tν , has its ex-
ponent always compatible with 0.5 (see two examples in
Fig. 3). Also, we notice that, regardless of the depth, the
value of γ is always compatible with 2ν. Note that these
values of γ and ν, measured for small t, correspond to
three-dimensional mean field values.

We have considered the integrated intensities I of
the superstructure reflections, which are proportional to
|t|2β . We find that the intensities exhibit power-law vari-
ations for temperatures below the critical value, but only
if one neglects a narrow temperature range of 0.6 K close
to the critical point, which corresponds to a two-phase
coexistence region (see Figs. 4 and 5). The existence of
this region indicates that, even in the skin-layer, there is
an actual first-order transition, albeit with a weak char-
acter, as indicated by the power law behavior outside the
aforementioned small range of temperatures. The mea-
sured value of β = 0.174 ± 0.003, however, is not mean
field but it is in agreement with an earlier measurement
on a different crystal22.

Above the crossover, at larger t, different universal
critical behavior is observed. Measurements indicating
values of γ = 3.06 ± 0.29 and ν = 0.69 ± 0.09 have
previously been reported4. However, other data fits at
these larger values of t give a range of values for γ and
ν. For example, in Fig. 3 values of γ = 3.3 ± 0.3 and
ν = 1.22 ± 0.09 are found. Thus, unfortunately, the ex-
isting experimental data sets don’t allow us to determine
accurately the critical exponents for temperatures higher
than the crossover. The available data show values for γ
as low as about 1.8 and as high as 3 and values of ν from

about 0.7 to 2.
Regarding the presence of defects in the material, dis-

location walls are the only kind of defect that extends
into the crystal for several µm. Other kinds of defects
are not found after the first 150 Å, and the influence of
this upper region on the scattering is negligible5. The ar-
rangement of dislocation lines into walls, in the skin layer,
is indicated by the mosaic spread. Walls occur inhomo-
geneously across the surface, so that in planes parallel
to the surface there is an inhomogeneous distribution of
dislocation lines3.

III. THEORETICAL MODEL

In order to give a picture that describes the unusual
experimental behavior of V2H detailed above, let us con-
sider a Ginzburg-Landau free energy density expansion
for a crystal with an anisotropic distribution of disloca-
tion lines. This free energy density is of the form

F (r) = (∇η)
2
+A2η

2 +A4η
4 +A6η

6

where η (r) is the order parameter field, and A2, A4 and
A6 are coefficients that depend on position r, thermody-
namic parameters, and, in some cases, the strain fields
created by dislocations and structural ordering. In par-
ticular, the order parameter field is defined to be 0 for
regions of the material which are in the disordered phase,
1 for points in the ordered phase with the hydrogen atoms
in the Oz1 sites, and −1 for the ordered phase with the
hydrogen atoms in the Oz2 sites. Also note that in the
above equation the odd powers are missing as their pres-
ence is disallowed by the symmetry of the crystal struc-
tures.

Much of the unusual phenomenological behavior ob-
served in V2H can be explained through the behavior of
the coefficients A2 and A4, which depends on the strain
fields caused by the edge dislocations and on the struc-
tural ordering that occurs preferentially near them. In
order to provide such explanation, we must not only un-
derstand the mechanism by which strain fields modify A2

and A4 in general, but also what specific modifications
result from the particular morphological arrangement of
dislocation lines that occurs in V2H.

We will see that while the behavior of A2 can ex-
plain the spatial variation of the critical temperature,
the corrections to the fourth-order term justify instead
the change in order of the transition. In particular, while
a Ginzburg-Landau expansion yields critical behavior for
vanishing odd-order terms, we can still describe a first-
order transition by letting A4 go negative.

In the remainder of this section, we will first discuss the
effects of the defects on A2, explaining the behavior of the
critical temperature. Then, we will describe the shape of
the ordered regions near the dislocation lines. Next, we
will show how the ordering strains affect A4, how this
makes the transition in the skin-layer continuous, and
how the crossover occurs. Finally, we will briefly discuss
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the effects of the depth-dependent crossover temperature
on the size of the critical region and give an argument
for the presence of a weak first-order transition in the
skin-layer.

A. Critical temperature

The compression-dilatation effect of an edge disloca-
tion on a crystal is responsible for a change in critical
temperature1. We can assume that the atoms of the crys-
tal interact more strongly where they are pushed closer to
each other, and vice versa that they interact more weakly
in the opposite direction. As a first approximation we can
assume that the correction to the critical temperature is
proportional to the elastic strain in the crystal.

The elastic strain can be found following the general
procedure described in Ref. 23. In the case of a single dis-
location line this yields a trace of the stress tensor σ that
in polar coordinates r and ϑ centered on the dislocation
line is

Trσ = −µb

π

1 + ν

1− ν

sinϑ

r
, (1)

where µ is the shear modulus, ν is Poisson’s ratio and b
is the magnitude of the Burgers vector. Making use of
the relations between elastic constants24, we can rewrite
eq. 1 as

Trσ = −3
Kb

r

1

2π

1− 2ν

1− ν
sinϑ ,

where K is the bulk modulus. The above equation, di-
vided by 3K, yields the strain, which, in our treatment,
is proportional to the local relative critical temperature
change τc

τc (r) ∝
b

r

1

2π

1− 2ν

1− ν
sinϑ , (2)

where T ′

c is the new critical temperature, and which is
defined as

τc =
T ′

c − Tc

Tc

, (3)

with Tc the transition temperature for an undifected crys-
tal. Notice that this result is in agreement with Ref. 1.

In the case of multiple dislocations, the effects of the
single dislocation lines get superimposed. For walls of dis-
locations, this allows us to estimate the above quantities
quite easily. Without loss of generality, we will consider
a wall that extends in the y direction while the lines are
parallel to z; we will indicate by h (y) the local inverse

linear density of defects, i.e., the local average distance
between two lines. We rewrite then eq. 2 in Cartesian
coordinates as

τc (r) ∝
b

2π

1− 2ν

1− ν

y

x2 + y2
, (4)

where we used sinϑ = y√
x2+y2

and r =
√

x2 + y2. If

h (y) changes smoothly along the wall, we can then write

τc (r) ∝
b

2π

1− 2ν

1− ν

n=+∞
∑

n=−∞

y + nh

x2 + (y + nh)2
, (5)

where r is the radial distance outwards from the closest
dislocation line and the dependence of h on y has been
omitted for simplicity of writing. The sum of the series
above is

n=+∞
∑

n=−∞

y + nh

x2 + (y + nh)
2
=

π

l

sin
(

2πy
h

)

cosh
(

2πx
h

)

− cos
(

2πy
h

) , (6)

where l is the unit of length used. It should be noticed
that the contribution decays exponentially with the nor-
mal distance x from the wall, in agreement with the ex-
perimental results in Ref. 3. Also, the rapid convergence
of eq. 6 suggests that h needs to vary slowly only over a
short distance, in order for the error made by considering
it constant to be small. Substituting eq. 6 in eq. 5, we
can then conclude that, in the case of dislocation walls,
the local relative critical temperature change

τc (r) ∝
b

2l

1− 2ν

1− ν

sin
(

2πy
h

)

cosh
(

2πx
h

)

− cos
(

2πy
h

) . (7)

Now, an expression can be found for the behavior of the
critical temperature with depth. In first approximation,

T ′

c (y + h) ≈ T ′

c (y) +
∂T ′

c (r)

∂y
δy ,

which can be rewritten as

T ′

c (y + h) ≈ T ′

c (y) + χ ,

where

χ ∝ Tch
∂τc (r)

∂h

dh

dy
.

Note that dh
dy

can be computed from experimental data,
such as the ones reported in Fig. 5 of Ref. 3, while the
other derivative can be computed from Eq. 7, yielding
the following expression for χ:
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χ ∝ Tc

b

2l

1− 2ν

1− ν

dh

dy

(

h sin
(

2πy
h

) [

x sinh
(

2πx
h

)

+ y sin
(

2πy
h

)]

{

x
[

cosh
(

2πx
h

)

− cos
(

2πy
h

)]}2
− y cos

(

2πy
h

)

h
[

cosh
(

2πx
h

)

− cosh
(

2πy
h

)]

)

.

Notice that using typical values for the elastic constants,
the proportionality factors in front of the functions in the
above equations are of the order of unity.

As for A2, the second order coefficient in the free en-
ergy density expansion, we recall that without defects it
is A2 = a (T − T0), with a generic proportionality con-
stant. From this expression and the definition of τc, we
can write the new second order coefficient of the expan-
sion as

A′

2 (r) = (1 + τc)A2 − aT τc .

The spatial dependence of the parameter is contained in
the local relative critical temperature change, that we
wrote here as τc for sake of simplicity, but which is actu-
ally τc (r). Thus, in contrast to A2, A′

2 varies in space.
Furthermore, summing the contributions coming from

single dislocations or dislocation walls, one gets a field of
relative critical temperature changes, which features in
the free energy density expansion as follows:

F (r) = (∇η)
2
+ a{T − T0 [τc (r) + 1]}η2 +A4η

4 +A6η
6 .

In this treatment the strain field surrounding a dis-
location line is spatially inhomogeneous, and this leads
to a spatial inhomogeneity of the ordering near a dislo-
cation line. In fact, the strain field caused by a line is

dipole-like. Because of this, at temperatures above the
transition temperature of an undefected crystal, ordered
regions exist below the dislocation lines, where the tran-
sition temperature is increased. On the other hand, the
transition temperature on the other side of the line is
symmetrically decreased. Thus, disordered regions exist
within a dislocation wall even at a temperature T below
the transition temperature of an ideal crystal. Then, at
any depth, the correlation length along y cannot exceed
a value of the order of h/2; conversely, the local ordering
temperature can only change when the density of defects
changes, i.e., over a distance of at least a few h.

B. Shape of the ordered regions

To find the shape of the ordered regions, we first fix
a value for the relative critical temperature change τc.
Then, we solve eq. 7 in order to find expressions relating
x and y as functions of each other. These solutions corre-
spond to the border of the ordered region for the chosen
value of τc, and, up to a multiplicative factor that is of
order of unity for typical values of the elastic constants,
they are

y (x) =
h

π
arctan







π ±
√

π2 + τ2c
[

1− cosh2
(

2πx
h

)]

τc
[

cosh
(

2πx
h

)

+ 1
]







; (8)

x (y) = ± h

2π
arccosh

{

2π tan
(

πy
h

)

+ τc
[

1− tan2
(

πy
h

)]

τc
[

1 + tan2
(

πy
h

)]

}

. (9)

Note that the regions are symmetric with respect to the
x and y directions.

From eq. 8 it follows that the maximum extension of
the regions along the y direction, Dy, happens at x = 0,
and its value is

Dy =
h

π
arctan

(

π

τc

)

. (10)

Notice that Dy → h
2

when τc → 0, that is, the regions
can never extend in y for a distance greater than h

2
, as

already stated in the previous section.
From eq. 9, it follows that the maximum estension

along the x direction, Dx, happens at y =
Dy

2
, and its

value is
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Dx =
h

π
arccosh





2π tan
[

1

2
arctan

(

π
τc

)]

+ τc

{

1− tan2
[

1

2
arctan

(

π
τc

)]}

τc

{

1 + tan2
[

1

2
arctan

(

π
τc

)]}



 ,

that can be rewritten as

Dx =
h

π
arcsech

(

τc
√

τ2c + π2

)

. (11)

Note that the center of the region is at x = 0, y =
Dy

2
.

Now it is possible to show that the ordered regions
grow from a rod-shaped nucleus with a circular cross-
section. With growth, their aspect ratio changes, mak-
ing the cross-section effectively elliptical. Finally, the
constraint constituted by the order-inhibited zones above
the dislocation lines introduces distortions in the shape.
To show this, we prove that, for large values of τc, corre-
sponding to the beginning of the growth of the regions,
x2

a2 +
y2

C

b2
≈ 1, where a = Dx

2
, b =

Dy

2
and yC = y − b is

the y coordinate measured from the center of the region.
In this regime, we can expand b as follows:

b ≈ h

2τc
+O

(

τ−3
c

)

.

Then, we use a similar treatment for a. First we expand
the argument of the arcsech for large values of τc:

a ≈ h

2π
arcsech

[

1− π2

2τ2c
+O

(

τ−4
c

)

]

.

Then, we expand the arcsech for values of the argument
close to 1, getting

a ≈ h

2τc
+O

(

τ−3
c

)

.

Expanding the argument of the arctan in eq. 8 for large
τc we get

y ≈ h

π
arctan

[

π

τc

1

cosh
(

2πx
h

)

+ 1
+O

(

τ−2
c

)

]

,

where we have imposed the condition that the argument
be real. Note that a big τc implies a small x. Then, it is

y ≈ h

2τc
+O

(

τ−3
c

)

. (12)

Also note that in the beginning of the growth a = b.
This means that the regions nucleate in the shape of nar-
row cylindrical rods along the dislocation lines. Figure 6
shows the shape of the cross section of the ordered regions
for different values of τc.

Figure 6: Shape of the cross section of the ordered regions for
different values of τc. From the outermost line inwards, the
lines correspond to values of τc that range from 0.1 to 1, in
steps of 0.1, except for the innermost line that corresponds to
τc = 1.5.

Substituting eq. 12 into eq. 9, and expanding for high
values of τc we find:

x ≈ ± h

2τc
O
(

τ−3
c

)

.

Finally, we have

lim
τc→∞

x2

a2
+

y2C
b2

=
h2

4τ2c

4τ2c
h2

+

(

h

2τc
− h

2τc

)2
4τ2c
h2

= 1 ,

that is, for small sizes, the regions are effectively ellip-
tical, and a and b can be identified with the major and
minor semiaxes, respectively.

To understand the relative shape and size of the or-
dered regions in a wall at a particular fixed temperature,
first notice that from the definition of τc (eq. 3) it follows
that any given temperature T is critical for points in the
crystal that satisfy the equation

T = Tc (τc + 1) ,

that is to say, for points in which τc = T−Tc

Tc
. Then,

from eqs. 10 and 11, for a fixed value of τc the major and
minor semiaxes of the ordered regions grow linearly with
h. Consequently, for a fixed temperature, the density
of defects decreasing with depth makes the size of the
ordered regions grow with depth. Their aspect ratio, in
contrast, remains the same. Of course, this argument is
valid as long as the approximation employed to obtain
eq. 7 using eq. 6 holds. Deep in the skin-layer, where
the density of defects almost vanishes, the strain field
associated with any ordered region is restricted to that if
a single dislocation line. Therefore, at great depths, the
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Figure 7: (Color online) Schematic illustration of the shape
and size of the ordered regions in a wall at a fixed temperature.
The surface of the crystal is at the top of the image. The
crystal extends beyond what pictured, that is just a region
in the vicinity of a single wall. While in the skin-layer the
regions have an elliptical cross-section whose aspect ratio is
constant, at greater depths their shape becomes increasingly
circular. Also, while the size of the regions increases with
depth, their number density decreases.

expression for τc tends to the form given in eq. 4. Solving
eq. 4 yields

y (x) =
1±

√

1− 16π2x2τ2c
4πτc

x (y) = ±
√

y (1− 2πyτc)

2πτc
.

We can then calculate Dy and Dx as above:

Dy = y (0) =
1

2πτc

Dx = 2x

(

Dy

2

)

=
1

2πτc
.

Thus, as the depth increases, the shape of the cross-
section of the regions becomes increasingly circular (see
fig. 7).

C. Critical behavior

To determine how the defects affect the fourth-order
term in the free energy density expansion, we start with
finding the displacement field due to a point source of
expansion by means of the tensor Green’s function for
the equilibrium equation. The displacement, which is
purely radial, is

υr =
W

4π (λ+ 2µ)

1

r2
, (13)

where W is the work associated with this expansion, λ is
Lamé’s constant, and µ is the shear modulus23.

Then, consider the particular case of a local expansion
due to the difference of structure between 2 points. Given
our order parameter field η, this expansion, purely hydro-
statical since it’s applied to an infinitesimal volume, can
be thought of as due to an equivalent pressure

p = K
δV

V

[

η (~r)− η
(

~r′
)]

= K
δV

V
η (~r) ,

where K is the bulk modulus. Since we are associating a
change of volume with a point, what we want to consider
is the smallest volume for which it makes sense to think
about a change of structure, that is, the volume of a unit
cell. So, calling vO the volume of a unit cell in the ordered
phase and vD the one in the disordered phase, we have
δV = vO − vD, hence

p = K

(

vO
vD

− 1

)

η (~r) . (14)

The work done to achieve this deformation is

W = pδV = K
(vO − vD)

2

vD
η (~r) ,

and we can use this expression in eq. 13 to find the contri-
bution to the displacement at the point ~r due to a point
at ~r′, which is

υr =
K

4π (λ+ 2µ)

[

vO − vD

(

~r′
)]2

vD

(

~r′
)

η (~r)

r2
.

Notice that we have made the dependence of vD on the
point explicit. For any particular ~r, vO − vD (~r) vanishes
in the limit of T → Tc (~r). Then, knowing the field in
every point, the total displacement at ~r is

~u (~r) =
K

4π (λ+ 2µ)
η (~r)

×
∫

dV ′

[

vO − vD

(

~r′
)]2

vD

(

~r′
)

~r′

r′3
,

(15)

where the integral is extended over all the points in the
disordered phase.
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Strictly speaking, eq. 14 is valid when the transition
is from the disordered to the ordered phase. For the
inverse transition, δV has the opposite sign and the term
in parentheses in eq. 14 is vD

vO
− 1. Yet, since vD ≈ vO,

the error committed in using the same formula is very
small; in fact, in the subsequent equations the volume
difference ends up squared, so that the error is actually
of second order and is neglected in this linear treatment.
Notice also that, after integration, the displacement is
not necessarily purely hydrostatic.

From the displacement vector we can find the compo-
nents of the strain tensor in Cartesian coordinates as

uij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

. (16)

Then, from the generalized Hooke’s law, we can find the
correction to the free energy density due to the deforma-
tion induced by the phase transition, B, as

B = µ

(

uij −
1

3
δijukk

)2

+
1

2
Ku2

kk . (17)

It’s to be stressed that this quadratic form is always posi-
tive, since K and µ are always positive. In fact, since the
body is in equilibrium, in the absence of forces the energy
must have a minimum at uij = 0, that is, the quadratic
form must be positive. Since this has to happen in any
case, it also has to happen when the stress is a pure shear
or a pure hydrostatic compression, that is when only one
of the two addenda is non-zero. This is the reason why
both K and µ must always be positive24. Moreover the
squares make this correction actually proportional to η2.
Then, when it is applied to the 2nd order coefficient in
the free energy density expansion, where it belongs since
its functional form is that of a strain, it yields a positive
effective correction to the 4th order term.

This correction, which corresponds exactly to the elas-
tic free energy, does not depend on the actual structure
of defects that causes it, but merely on the order param-
eter field and, of course, on the elastic constants of the
material. This means that, regardless if it’s coming from
a single dislocation, a wall of dislocations, or a more com-
plicated framework of defects, once the elements of the
strain tensor are known, they can be used to correct di-
rectly the free energy density expansion as discussed and
as follows:

F (r) = (∇η)
2
+ a{T − T0 [τc (r) + 1]}η2

+

[

A4 +
B

η2

]

η4 +A6η
6 ,

where τc is the local relative critical temperature change
resulting from the superposition of the contributions
of single dislocation lines (eq. 2) and dislocation walls
(eq. 7). While no quantitative solution of the above
equations is offered here, notice that an explicit calcu-
lation would be very difficult. In fact, even in simpler
cases of lattices in only 2 dimensions featuring regularly

arranged point defects with short range interactions, the
results can be highly non-trivial25.

We know, however, that, from a purely phenomenolog-
ical point of view, the change of order in a phase transi-
tion can be associated with the change of the sign of A4,
which determines whether the transition is continuous or
discontinuous. The fact that the correction to this coeffi-
cient is always positive, shows how an originally negative
A4 can turn positive, thus resulting in a first-order tran-
sition becoming continuous in the presence of defects, as
observed in V2H.

Note that a correction to A4 due to the ordering pro-
cess exists also in an undefected material. However, at
least in the beginning of the nucleation of the new phase
in the disordered material, this correction is not greater
than the one in the skin-layer discussed above26. In fact,
when the ordered phase starts to nucleate in a perfect
crystal, the shape of the nucleus is that of an infinitely
thin platelet27. The strain energy density contribution
of the infinitesimal platelet is

Fp =
1

2
C (n̂0) , (18)

where C is a linear function of the strains and n̂0 is the
unitary vector minimizing C27. As before, the strains
being proportional to η2, the equation above yields an
effective correction on the fourth-order term.

On the other hand, we have seen that the shape of
the nucleus in the skin-layer is that of an infinitesimal
cylindrical rod. Then, eq. 18 becomes

Fs =
1

2
〈C (n̂)〉 ,

where the brackets indicate the angular average of C.
Since the average of a quantity is never smaller than its
minimum, the correction in the skin layer due to an in-
finitesimal nucleus cannot be smaller than the one in the
bulk.

D. Tricritical behavior

Recalling eq. 15, we notice that the more the order
spreads, the more the domain over which the intergral
is carried out is reduced. Moreover, the contributions in
the integral are weighted with the square of the distance
to the point to which they apply.

Thus, with growing regions, the magnitude of the dis-
placement vector will steadily decrease. Also, the dis-
placement vector field will become spatially increasingly
homogeneous, especially in points not too close to the
borders. Therefore, the components of the strain ten-
sor will decrease as well, since we know from eq. 16 that
they depend on the derivatives of the total displacement
vector components, which are changing smoothly.

The fact that the correction to A4 is proportional to
the square of a linear combination of strain tensor com-
ponents (eq. 17) guarantees that its value will be small
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Figure 8: (Color online) Schematic illustration of the ordering
process near dislocation lines at an arbitrary depth. Red and
light blue regions of the ordered regions distinguish different
ordering domains, corresponding to the two different signs
of the order parameter. At higher temperatures, shown in
A), the regions don’t touch each other, the correlation length
(average length of an ordered domain) is smaller than the
distance between dislocation walls, and there is little or no
correlation in the ordering in different regions. At lower tem-
peratures, shown in B), the ordered regions are thicker and
now touch, the correlation length is longer than the average
distance between dislocation walls, and the order is spreading
throughout the network of regions.

and positive throughout the new transition. If this is
added to a small negative “original” fourth order coef-
ficient, as it is the case in V2H, whose bulk transition
is first order, it will make A4 effectively vanish, thereby
making the transition behavior tricritical, and, because
the upper critical dimension of this tricritical theory is 3,
causing the mean-field values of the exponents that are
observed experimentally.

Note that below a certain temperature where the wall
lines have ordered independently, the walls consist of do-
mains with order parameter of opposite signs. In the
case of a complex framework of dislocation walls which
intersect and interact with each other, on further lower-
ing the temperature, one of the two signs will eventually
spread throughout the network until the order parameter
has the same sign everywhere (see also Fig. 8).

E. Effects on the critical region

The mechanism for tricriticality also provides an ex-
planation for the depth-dependence of the crossover tem-
perature. In fact, the density of defects decreases with
depth. Thus, in order for the domain of the integral in
eq. 15 to be sufficiently reduced, the temperature needs
to be decreased more at greater depths. Consequently,
the correlation length ξ has to increase more at greater
depths than it has to in layers closer to the surface in
order to reach the critical point. In other words, for the
same change in reduced temperature, the change in cor-
relation length is higher for shallower depths. The cor-
responding scaling law should then be modified so that
the coefficient depend on depth:

ξ(d) = a(d) t−ν .

In particular, it is reasonable to expect a(d) to be propor-
tional to the density of defects, as it is in fact observed ex-
perimentally5. This mechanism provides an explanation
as to why experimental measurements of ξ at different
depths yield different values even if taken at correspond-
ing reduced temperatures, once the depth-dependence of
the critical temperature has been accounted for, and even
though the critical exponent remains the same. A treat-
ment to collapse the data onto a single curve, including
corrections for the experimental method used, has been
proposed and verified in Ref. 5.

F. Weak first-order transition

As the temperature is lowered below the critical point,
the remaining material between the walls orders and
a second, distinct, phase transition occurs. However,
considering eq. 15 again, we notice that the correction
only applies to the material inside the “skeleton” of ORs.
Therefore, for the material that is still between the ORs,
the fourth-order coefficient is still negative. In such re-
gions the transition is still first-order, but it is weaker
than it is in an undefected crystal.

Because this transition is only weakly first-order, a crit-
ical exponent β associated with it can still be measured
as shown in Fig. 5. The measured values are 0.180±0.004
and 0.174± 0.003. Such values confirm that the transi-
tion regime is not tricritical, since in that case one would
expect a mean field exponent β = 0.2528.

IV. CONCLUSIONS

In conclusion, we have proposed a theoretical model
which explains the two-length-scale phenomena and re-
lated behavior observed experimentally in many mate-
rials, including the unusual ordering behavior observed
in V2H. In particular, the depth-dependence of the crit-
ical temperature in the skin layer, reported recently5, is



11

shown to be caused by the strain field induced by the
presence of walls of dislocations. The ordering process
itself crosses over between two regimes, causing the ex-
perimentally observed crossover in the values of the criti-
cal exponents. The additional strains induced by the for-
mation of the ordered regions are responsible for increas-
ing the effective value of the fourth-order coefficient in a
Ginzburg-Landau free energy density expansion, thereby
allowing the transition to become continuous in the skin
layer even if it is first-order in the bulk as we find in V2H.
Furthermore, the strength of this correction weakens dur-
ing the spreading of the order through the network, driv-
ing the value of the fourth-order coefficient to zero, thus
producing tricritical behavior and mean-field values of
the critical exponents. Thus, when the temperature is
lowered, first a continuous transition happens along the
dislocations as described. Then, at a still lower tempera-
ture, the material between the cylindrical regions orders.
However, it undergoes a transition that is first order, sim-
ilar to the one that takes place in the bulk but weaker.
The model also explains why, in the mean-field regime,
the critical region has a depth-dependent size.

Although in this paper we have specifically considered
the case of V2H, the theoretical framework that we have
developed should be broadly applicable for understand-

ing ordering behavior in defective materials, particularly
those that have an anisotropic distribution of defects. We
considered a situation in which the bulk, and the mate-
rial in between the interconnected network of cylindrical
regions in the skin layer, orders through first-order tran-
sitions. However, the model we have developed is easily
adaptable to a situation where the transition in between
the cylindrical regions is continuous, and to a situation
where both transitions are continuous. In the latter case,
though, we would not expect to see a crossover in the scal-
ing behavior of the central peak of the skin layer CDS.
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